
  

Abstract—In upcoming ambient intelligence applications, 

services provided by heterogeneous and often mobile platforms 

are combined to build “intelligent” environments. As these 

services are hosted within different administrative domains, 

equally respecting security policies of all services becomes a 

challenge and conflicts between the policies of different 

domains can occur. In this paper we propose an approach to 

resolve conflicts between policies of different administrative 

domains at runtime by means of meta-policies. The proposed 

meta-policy model allows policy administrators to define 

certain guarantees which must not be overwritten in any case, 

thereby acting as invariant security properties. While decisions 

characterized as strict according to the meta-policy are 

guaranteed to be enforced, decisions classified as defeasible 

may be overwritten by policy decisions created by other 

domains. We present a use case example illustrating how the 

approach provides a resolution of cross-domain conflicts, 

describe the underlying policy model based on description 

logics, explain how access requests are decided and inter-

domain conflicts handled and discuss a proof-of-concept 

implementation of our approach. 

I. INTRODUCTION 

 

With the advent ambient intelligence (AmI) environments 

and powerful mobile devices like smart-phones, more and 

more services are not only hosted by web servers that are 

placed in a fixed network infrastructure but also by mobile 

embedded platforms. As these services roam across different 

networks and are provided in different administrative 

domains, defining access control policies for them becomes 

a critical issue. Developers of traditional web services make 

use of access control policy languages like XACML [1] in 

order to specify who is allowed to access the service under 

certain conditions. However, the assumption of XACML as 

well as many other access control languages is that a service 

is always under control of a single administrative domain. 

While this assumption is feasible for fixed services, it does 

not fit the needs of mobile services which are potentially 

used in different environments, each comprising its own 

policy domain. If developers combine services from 

different administrative domains in order to create value-

added services, the value-added service needs to abide by 

the security policies of each of the combined domains. Also, 

when mobile devices roam across different environments 

they become subject to multiple policy domains at the same 

time. In both cases, the security policies of multiple domains 

must be applied to a service. As the policies of different 

domains might contradict each other, mechanisms for 

recognizing and resolving such conflicts are critical. Simply 

preferring the policies of one of the domains is however not 

a satisfying solution. In that case, the policies of other 

domains would inadvertently be overridden and as a result 

the effective security properties of a system would be 

unclear to developers and users. So, while on the one hand 

detecting and solving inter-domain policy conflicts is a 

necessity, developers need to be sure of guaranteed security 

properties of their system which must not be overridden at a 

later time.  

Another drawback of most current access control policy 

languages is that they rely on predefined identifiers for 

subjects and resources. Mobile services are however 

discovered and selected in an ad-hoc fashion and many AmI 

middleware systems make use of semantic service 

descriptions for that purpose. It becomes therefore difficult 

for policy administrators to specify policies at design time 

without knowing the actual entity to which the policies shall 

be applied later at run time. In order to overcome this 

limitation, several authors have proposed an integration of 

semantic knowledge and policies – an approach we deem as 

undoubtedly sensible and considered in our work. 

Summarizing, in order to deal with the requirements of 

mobile services and overlapping policy domains, access 

control policies need to be extended by semantic 

descriptions and the ability to deal with inter-domain 

conflicts while preserving guaranteed security properties as 

wished by the developer. In this paper we therefore propose 

a model of access control policies on the basis of 

Description Logics (DL) which are the basis of knowledge 

representations in semantic web technologies (SWT), e.g. in 

ontologies. In order to cope with policy decisions from 

multiple domains and the resulting possible conflicts, we 

add the concept of meta-policies allowing administrators to 

specify policy invariants which are guaranteed to be 

enforced even in the case of conflicts. On the basis of this 

model we describe how a Policy Decision Point (PDP) can 

answer access requests using (decidable) extensions of DL. 

As a result of this policy decision process, a Policy 

Enforcement Point (PEP) is informed about the actual effect 

which has to be enforced as well as a classification of this 

effect, either as strict or defeasible, determining whether the 

decision must be enforced or may be overwritten in the case 

of conflicts. In case a conflict cannot be resolved due to 

several conflicting strict decisions, a compensating action 

can be specified – usually instructing the service to leave the 

conflicting policy domain or to simply log the conflict. 

In the following section we review work related to ours 

and then present an Ambient Intelligence use case 

motivating our approach in section III. In section IV we 

describe how we modeled access control policies using 

description logics and introduce the concept of meta-policies 

for defining invariable policy decisions. Section V explains 

how access requests are decided on the basis of description 

logics and how conflicts between policy domains are 
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detected and handled. The practicability of our approach has 

been tested by means of a proof-of-concept prototype whose 

design is presented in section VI and section VII concludes 

the paper. 

II. RELATED WORK 

Work related to ours is on the one hand concerned with the 

integration of semantic web technology (SWT) into policies 

and on the other hand with detecting and resolving conflicts 

by means of meta-policies: 

The need for considering semantic information in policies 

has been recognized by various authors and a number of 

approaches have been proposed – ranging from optional 

semantic extensions of existing policy languages to 

completely semantic-based policy frameworks:  

In [14] an approach of using semantic attributes in XACML 

is described. The authors propose using SWRL rules to infer 

implicit information like “is full age” from explicit facts 

provided in an access request like “age>18”. The authors of 

[12] aim at the same goal but use RDF triplets to describe 

attributes in XACML. Both approaches work on RDF 

triplets and are thus not able to deal with advanced concepts 

like cardinalities which are supported by OWL. In [15], the 

combination of XACML and OWL is used to realize a role-

based access control model. Although the approach of using 

class expressions for describing policy subjects and 

resources is promising, the suggestion of using XACML’s 

obligation element to add inferred axioms to the knowledge 

base during the policy decision process appears a bit 

intricate.  

Further, in [10] individuals from an ontology can be used in 

a WS-POLICY definition and are compared against the 

information contained in an access request by predefined 

custom comparison operators like “less than” or “is 

subclass of”. From these approaches we adopt the idea of 

integrating semantic attributes into policies, yet our 

approach of using class expressions overcomes the 

complexity of SWRL rules and the limitations of RDF 

triplets, does not rely on custom operators and also does not 

require modifications of the knowledge base during the 

decision of an access request. 

Other authors have worked towards realizing complete 

policy frameworks on the basis of description logics. In [2] 

Kolovski presents a formalization of XACML in so-called 

“defeasible description logic” (DDL
-
) which he proposes to 

use for analysis purposes. Although the policy structure we 

use is similar to the one proposed in [2], our formalization 

considers ordering of rules and supports more rule-

combining algorithms. Also, we our goal was to put the 

formal policy model into practice using standard semantic 

web technologies. 

Rein [16] [11] is a distributed policy framework which 

defines policies using the Notation3
1
 language and 

ontologies expressed in OWL. A related approach is 

followed by the policy framework of the KAoS [21] project 

where DAML, the predecessor of OWL, is used to define 

policy ontologies and builds the basis for policy analysis and 

–decision services. However, these frameworks do not deal 

with conflicts between the on pervasive systems policies of 

different administrative domains.  

The policy framework Ponder [9] does not consider 

semantics but organizes policy domains hierarchically and 

resolves conflicts between their policies by either giving 

 
1 http://www.w3.org/DesignIssues/Notation3 

precedence to the rules of the most specific domain or by 

defining a default decision which must be applied to all 

child domains of the root domain [20]. This approach is 

however not suited for resolving conflicts between policies 

which have been stated by different authorities, as it 

implicitly allows one domain to override the policies of 

another one. Different types of policy conflicts and 

strategies on how to detect them either statically (at design 

time) or dynamically (at run time) have been discussed in 

[19], yet without providing methods for resolving such 

conflicts.  

The idea of meta-policies has been discussed in depth in [7] 

and [8]. This idea has been put into practice to a limited 

extend by the abovementioned domain-wide default policy 

decision in the Ponder framework. In [18] meta-policies 

have been applied for resolving conflicts on a set of policies, 

in order to enforce constraints such as separation of duty. 

Yet, none of these approaches provides a solution for 

resolving conflicts between different administrative policy 

domains which is the focus of this paper. 

III. SCENARIO 

In this section we introduce a brief use case example to 

motivate the problem addressed in this paper and to 

illustrate our approach on solving it. The problem of 

conflicting policy domains can occur in many different 

scenarios, for example when creating value-added services 

which combine services from multiple administrative 

domains in an enterprise SOA. As in our work we put the 

focus on services provided by mobile devices in pervasive 

systems we have chosen a more future-oriented use case 

from this kind of application domain. Yet, the solution as 

discussed in the rest of this paper is not limited to this 

scenario. 

We assume Alice owns a smart-phone which she uses in 

different environments, for example in an environment 

denoted as @home for private purposes and in environment 

@work for business tasks. These environments are not 

necessarily bound to a physical location but rather depend 

on the purpose of the current task and may thus overlap, i.e. 

be both active at the same time. Depending on the 

environment in which it is used, the device has to comply 

with different access control policies: while Alice uses the 

device in environment @home, she allows access to 

different services provided by the device: for everybody in 

the local network, access to an AdminService for controlling 

the settings of the phone should be granted. Further, a 

Camera service and LocationTracker service should be 

accessible for Alice’s family members. So, a simplified 

policy for the @home environment could look as follows: 

 

 

 

 

 

 



  

 
Figure 1 Access request to a service results in conflict between 

policy domains. 

On the other hand, if the smart-phone is used in the 

@work environment it has to deal with potentially sensible 

information, so the administrator of Alice’ company has set 

the following policies: access to all Camera- and 

LocationTracker services has to be denied and it is required 

that at least an administrator of the company has access to 

the phone’s AdminService in order to be able to apply 

further configurations. The @work policy could thus look as 

follows: 

 

 
 

 

 

 

 

In case both environments are active and thus policies of 

both domains shall become effective, conflicts between the 

policies of @home and @work can occur: for example, if a 

family member of Alice wants to locate her using the 

LocationTracker, the @home policy would allow this 

request while the @work policy would refuse it (c.f. Figure 

1) - the same applies if Alice would be trying to use the 

camera service. Also, if an administrator from Alice’ 

company would request access to her phone’s AdminService 

– a legitimate request according to the @work policy, the 

@home policy would be indifferent and could refuse the 

request, depending on the default decision. 

These types of cross-domain policy conflicts are likely to 

occur more often as mobile and multi-purpose devices 

increasingly provide services to their environment, as it is 

the vision of Ambient Intelligence. A simple approach to 

this problem would be to require environments to be 

disjunct so that only one policy domain is applicable at a 

time. However, this contradicts the idea of having multi-

purpose devices roaming across different environments. 

Another approach which is also followed by policy 

frameworks like Ponder2
2
 is to hierarchically structure 

policy domains and then either prefer the most specific or 

the most generic policy. Yet, a significant drawback of these 

approaches is that they allow policy domains to override 

rules set by other domains without any limitations. As a 

result, policy administrators would not be able to tell if and 

when their policies might become overwritten by those of a 

 
2 http://www.ponder2.net 

different domain and thus - in contrast to a single-domain 

scenario – policies could not be regarded as “guaranteed 

security properties” of a system anymore. 

 

Instead of structuring policy domains and hardcoding the 

resolution of conflicts based on that structure, our approach 

focuses on using meta-policies in order to allow 

administrators to define certain invariants which must not be 

overwritten by different policy domains. Referring to our 

example, we could assume that Alice has defined the 

following meta-policy in order to avoid that she gets locked 

out from her own phone: 

 

 

 
 

This meta-policy is much more specific than the original 

policy and only requires that the AdminService stays 

accessible for Alice herself. As the meta-policy works as an 

invariant, it cannot be overwritten by any other policy 

domain. Also the company’s administrator could specify a 

meta-policy to ensure access to the AdminService and to 

restrict the usage of Camera and LocationTracking service 

under all circumstances: 

 

 
 
 

 

 

By adding such meta policies, conflicts between the two 

policy domains can now be handled: access requests to the 

AdminService are granted to administrators of the company 

and to Alice herself (fulfilling the guarantees set by the meta 

policies), but not to family members of Alice (the @home 

policy’s grant decision is overwritten by the more restrictive 

@work policy here). The Camera service and the 

LocationTracker are blocked for everyone, as required by 

the @work meta-policy.  

In the following sections, we will describe the how the 

necessary components for realizing such a scenario can be 

designed: the structure of policies and meta-policies, the 

policy decision process and a possible implementation based 

on semantic web technology. 

IV. POLICY AND META-POLICY MODEL 

We use Description Logics to describe a formal structure 

of policies and meta-policies. This way, we facilitate an 

integration of policies with external knowledge bases in the 

form of ontologies and thereby separate domain knowledge 

from the rules which reflect the security model of an 

application. Domain knowledge describes for instance 

properties of authorization methods, known vulnerabilities 

or the strength of cryptographic protocols. This domain 

knowledge may change over time even if the security 

requirements of an application are the same as new 

cryptographic mechanisms become available or weaknesses 

in existing ones become public. Integrating this domain 

knowledge into policy descriptions is desirable as it allows 

administrators specify policies at a higher, more 



  

understandable level and to access all semantic service 

descriptions that are already available in the application. The 

policy structure we introduce in this paper is basically 

derived from XACML [1] and aligns in parts with the 

formalization provided by Kolovski [2]. Some details of the 

XACML specification have been abstracted away for clarity 

and meta-policies for defining policy invariants have been 

added. The notation used in the following subsections is 

based on the Description Logic terminology as described in 

[3]. 

A. Description Logics 

At first, we provide a brief overview of the terminology 

and the main concepts of description logics (DL) which we 

use in the rest of this paper. DL comprises logic languages 

which are subsets of first order logic and which have mainly 

been designed for knowledge representations. The term 

“description logics” does not refer to a single dedicated 

logic language but rather to a family of logics which follow 

the same formalism but show different levels of 

expressivity. The two most important differences between 

first order logic and DL are decidability and the open-world-

assumption (OWA): in contrast to first order logic, all 

description logics are decidable which makes them attractive 

to be used in the context of policy decisions. Indeed, 

although they are decidable, most reasoning problems show 

at least EXPTIME complexity but practice has shown that 

they can be efficiently solved in knowledge bases of 

reasonable size. While first order logic considers facts which 

are not contained in the model as non-existent – i.e. it 

assumes a closed world – DL is based on the open world 

assumption. It assumes the model to be incomplete and thus 

does not have any knowledge about facts which are not 

contained in the model. As a result of the OWA, it is not 

possible to infer negation of a fact from its absence in the 

model.  

A knowledge base is modeled in DL by concepts, roles 

and individuals (these terms relate to classes, properties and 

objects in OWL and both terminologies are used 

interchangeable in this paper). The knowledge domain is 

modeled by a hierarchy of concepts which are connected by 

roles. Individuals are then assigned to these concepts and 

thereby build a specific description within the scope of the 

knowledge domain.  

With the advent of semantic web technologies, 

description logics have gained importance as they build the 

underlying formalism of ontology languages like OWL – for 

example, OWL-DL v2 corresponds to the description logic 

 which supports hierarchy of roles (H), object 

value restrictions (O), inverse roles (I), cardinality 

restrictions (N) and data types (D). This specific DL is also 

supported by the Pellet reasoner which we used in our 

prototype implementation, as explained below. Description 

logics and ontologies themselves do not allow expressing 

rules which makes some modeling tasks tedious and verbose 

(e.g. transitivity of properties) and can further be a limitation 

in cases where DL alone is not expressive enough. The rule 

language SWRL is based on DL and allows specifying rules 

over facts from OWL ontologies. Although SWRL itself is 

much more expressive than DL and can lead to non-

decidable models it can be used in a “DL-safe” way that 

does not go beyond the expressivity of DL, as described in 

[5]. 

The concepts of description logics will be used in this 

paper for describing the policy model and the DL-based 

languages OWL, SWRL and its query extension SQWRL 

have been used for the prototype implementation of the 

policy model and a respective PDP. 

B. Description logic based policy structure 

The policy structure we use is similar to that of XACML 

in that we describe a policy as a rule combining algorithm 

and a set of rules, each with a target description and an 

effect. However, details of XACML which are not necessary 

within the scope of this paper have been abstracted away 

and further, in order to reflect the order of rules that is 

needed for some of the rule combining algorithms, we 

introduced an injective functional hasNumber relation that 

assigns a number to each rule. A policy is thus modeled as 

the following DL concept 

 

 
 

 
 

where rules, targets and effects are denoted by the 

following class expressions: 

 

 

 

 

 

 

 

 

 

C. Meta-policies 

In addition to policies, we specify a model for meta-

policies which can be thought of a “policies about policies” 

and are used to formulate guaranteed properties which must 

be fulfilled by the actual policies. On the one hand, these 

guarantees can be used by policy administrators as 

invariants to check their policies against, thereby for 

example verifying that a company's policy complies with 

certain usage restrictions as stated by the company's 

regulations. On the other hand, we propose using meta-

policies in order to resolve conflicts between different 

policy domains, as described below in section V. A meta-

policy comprises a target definition, an effect and an 

optional compensation which defines an action that must be 

executed in case the meta-policy's decision becomes 

overwritten. While target and effect are defined as above, 

Compensation is defined by the set of described nominals 

{comp1,..,compn} each referring to the (unique) name of a 

compensating action (e.g., a Java class name) whose 

purpose is described below. A meta-policy is thus denoted 

by the following class expression Meta and its two 

subclasses PermitMeta and DenyMeta, comprising those 

meta-policies with a permit and a deny effect, respectively: 

 

 

 

 

 



  

 

 

 
 

 

A specific meta-policy is then defined as a subclass of 

either DenyMeta or PermitMeta and contains only the 

specification of a target, as the following exemplary meta-

policy DenyScientist which denies access to all targets 

described as individuals of the concept Scientist. 

 

 

 

D. Conflict-freeness of meta-policies 

The purpose of meta-policies as proposed in this paper is 

to state policy invariants which are guaranteed to be 

enforced, even in the case of conflicts. Obviously, these 

invariants must not contradict themselves as otherwise a 

policy decision would be classified as both strict and 

defeasible and the PEP would be indifferent about whether 

the decision is compatible with other domains or not. 

However, simply leaving it up to the developer to ensure 

conflict-freeness of meta-policies is not a sensible option as 

this would require the developer to manually identify every 

potential conflict in a (potentially large) set of meta-policies 

– a task which is tedious and becomes even more difficult as 

relevant information is implicitly “hidden” in ontologies. 

For instance, if the subjects of two meta-policies are 

described by the DL concepts Scientist and ProjectManager 

it is not immediately visible if these two meta-policies may 

apply to the same subject or not. Only if the ontology 

explicitly declares Scientist and ProjectManager as disjunct 

concepts one can be sure that both meta-policies are never 

applicable at the same time and that no conflict can occur. In 

order to support developers in ensuring the conflict-freeness 

of their meta-policies, the DL-based model can be used as 

follows to detect possibly conflicting meta-policies: 

The idea of checking the model for possible conflicts is to 

construct a class that is only satisfiable if a possible conflict 

between meta-policies exists and that helps to detect 

conflicting meta-policies (the other way around, a class that 

is only satisfiable if all meta-policies are conflict-free would 

appear more natural but is cumbersome to realize because of 

the underlying open-world-assumption). We call this class 

Impossible and add it to the policy model, together with an 

individual imp of that class. Both are of course only added 

for the purpose of detecting conflicts and are removed after 

the validation process as otherwise the PDP had to work 

with a conflict-free, yet unsatisfiable (and thus unusable) 

model. The Impossible class is constructed as a subclass of a 

pair of PermitMeta and DenyMeta classes and the individual 

imp is an instance of it: 

 

 

 

 

In case the meta-policies do not contain any possible 

conflicts the Impossible class becomes unsatisfiable and as a 

consequence the model will be inconsistent because the imp 

individual cannot be assigned to an unsatisfiable class. If 

however possible conflicts exist between meta-policies, the 

model will be satisfiable and the reasoner will infer 

properties for the imp individual which allow a developer to 

identify the source of the conflict so it can be removed. 

To illustrate this, we give a brief example, assuming that 

two meta-policies PermitProjectManager and DenyScientist 

exist – the former allowing a certain request for all subjects 

of type ProjectManager and the latter denying the same 

request for all subjects of type Scientist. As mentioned 

before, the source of a conflict lies here in the fact that a 

subject might exist that is both, Scientist and 

ProjectManager at the same time (which might not be 

immediately obvious in more complex models). In this case, 

the reasoner will identify the conflicting meta-policies by 

assigning the imp individual to them and the inferred 

properties of imp reflect the values of the access request 

which would lead to the conflict. Figure 2 shows which 

values of an access request would lead to a possible conflict 

between PermitProjectManager and DenyScientist. The 

cause of the conflict itself is identified by the two different 

values for the hasEffect property. 

 

 

Figure 2 Properties of imp individual, explaining a possible 

conflict. 

From this information, explanations could be generated to 

inform the developer about the possible conflict, its cause 

and possible resolutions of it. 

V. POLICY DECISION 

In the previous subsections we described the structure of 

rules, policies and meta-policies by means of DL. Based on 

this structure, we will now describe how an access request is 

decided using semantic web technology (subsection A) and 

how conflicts between different policy domains are detected 

and solved (subsection B).  

A. Decisions of a single domain 

When a subject wants to access a resource, an access 

request is intercepted by the PEP and forwarded to the PDP. 

The PDP evaluates the policy and returns an access 

decision, determining whether the access is permitted or 

denied and whether the decision may be overwritten by 

other policy domains. The PEP is then responsible for 

enforcing the PDP's decision. We denote an access request 

as the triplet representing a target 

target=<(subject),(resource),(action)> and a policy 

decision as decision=<{permit,deny},{strict,defeasible}, 

compensation>. 

As every policy can comprises several rules with different 

effects, the decision process must support overriding the 

decision of one rule by that of another one (in XACML, this 

procedure is determined by the rule-combining-algorithm 

element). As overriding existing facts in a knowledge base 

would require non-monotonic reasoning which is not 

supported by plain DL, it is not possible to decide a policy 



  

request only on the basis of DL. However, query languages 

like SPARQL and SQWRL allow retrieving the relevant 

facts from the knowledge base without requiring non-

monotonic reasoning. We therefore propose using SQWRL 

[6] queries for evaluating access requests – an extension to 

the SWRL [4] rule language which applies non-monotonic 

operations only to the result set of a SWRL query and does 

not write them back into the knowledge base. For each of 

the supported rule combining algorithms there is a separate 

SQWRL query and each of them is executed during the 

policy decision process. As an example, the SQWRL query 

for the denyOverrides algorithm looks as follows; the other 

queries for permitOverrides and firstApplicable are 

constructed alike and omitted here for the sake of brevity: 

 

 

 

For each access request these queries return a single effect 

value (deny or permit) which is communicated back to the 

PEP as the final decision. In a second step, the PDP needs to 

evaluate whether the decision should be classified as strict 

(i.e. it has to be enforced in every case) or defeasible (i.e. it 

can be combined with other domains and possibly be 

overridden). For this purpose, the same access request is 

tested against the set of meta-policies, using a similar 

SQWRL query:  

 

 

 

If this query returns an empty result set, the access request 

is not covered by any meta-policy and is classified as 

defeasible by the PDP. If the query results in the same effect 

as the previous evaluation of the policy, the decision is 

classified as strict and the PDP returns the effect and the 

classification to the PEP. In case this query results in a 

different effect than the result of the policy evaluation an 

internal conflict occurs, i.e. the policy contradicts its meta-

policy. If that should happen, the decision of the meta-policy 

is preferred and classified as strict, thereby ensuring that it 

always the meta-policy which determines the final decision. 

In general, developers might want to avoid such internal 

conflicts as the effective results of a policy are not easily 

recognizable from the model anymore if they become 

overridden by the meta-policy, thereby making the policy 

model harder to understand and maintain. Detecting and 

removing internal conflicts statically (i.e. at design time) 

using DL-based techniques would be possible (e.g. by 

constructing a subclass of  and checking 

for its unsatisfiability) but has not been implemented in the 

prototype for two reasons: at first, internal conflicts might 

be wanted, for example in scenarios where a set of pre-

defined meta-policies specifies the overall access rights for a 

whole company and each department of the company may 

define its own set of policies within the scope of these 

overall meta-policies. Second, being able to statically check 

for internal conflicts implies that the whole policy has to be 

specified invariably on the basis of DL and facts which are 

known at design time. This would be a serious limitation as 

it would not be possible to include conditions referring to 

runtime information like time into policies – an option that 

we certainly did not want to exclude. Rather, our approach 

envisions detecting internal conflicts upon their occurrence 

at runtime, preferring the meta-policy’s decision and 

logging the issue so administrators are informed about 

possible inconsistencies in their policy model. This way, it is 

possible to include data that is only available at runtime into 

policy decisions while ensuring that meta-policies act as 

invariants which are guaranteed to be enforced. 

B. Decisions of multiple domains 

Up to now, we have only considered the traditional case 

of a policy decision within a single domain. Now, we will 

look at PEPs which reside in multiple policy domains at the 

same time and how they can make use of meta-policies to 

handle conflicting policy decisions by these domains. We 

assume that a PEP is originally associated to an initial PDP 

and then can connect to further PDPs at runtime, as the 

illustrated by domains @home and @work in the example 

above. If the PEP is controlled by multiple policy domains, 

it will forward an access request to each domain’s PDP and 

will subsequently receive a number of decisions, each 

consisting of an effect, a classification as strict or defeasible 

and a compensation action, as explained in the previous 

section. Conflicts between these decisions arise if one PDP 

decides to allow the access request while another PDP 

denies the request. The PEP then uses the strict/defeasible 

classification to resolve this conflict as follows: 

If all conflicting decisions are classified as defeasible, all 

domains accept overriding their policies in support of 

combined policy domains and the PEP can simply select and 

enforce one of the decisions, for example that of the PDP 

which was first connected to the PEP. In case only one of 

the conflicting decisions is marked as strict while all others 

are defeasible, it is of course the strict decision that is 

enforced by the PEP. If however multiple conflicting 

decisions are classified as strict, the consequence is that 

these policy domains cannot be combined with each other – 

otherwise invariants set by the meta-policies would be 

violated. The only option in this case is to disconnect the 

PEP from the conflicting PDPs, thereby releasing the 

linkage of the conflicting policy domains. So, the PEP 

selects the first strict decision and executes the 

compensating action of all further conflicting decisions 

being marked as strict. The compensating action refers to a 

function which immediately removes the PEP from the 

conflicting PDPs and whose implementation depends of 

course on the underlying protocols used for combining and 

leaving domains which are not in the scope of this paper and 

will therefore not be discussed in more detail. As a result 

from leaving a policy domain, all services provided in that 

domain will not be accessible anymore. Applied to the 

example above, if @work and @home were incompatible, 

Alice had to leave either of them and consequently the 

services she provides could not be used from either her 

home- or her company domain. 

This way, it can be guaranteed that the invariants defined 

by meta-policies are not violated by the PEP – at the price of 

different non-combinable domains in the case of conflicting 

strict decisions. 



  

VI. PROTOTYPE 

The above described policy model, decision process, 

classification as strict/defeasible and the validation of 

conflict-free meta-policies have been implemented in form 

of a proof-of-concept prototype in order to test the practical 

applicability of the approach. In this section, we present the 

design of the prototype and discuss the insights which were 

gained during the implementation. 

In a first step, the DL-based policy model from section IV 

has been realized in form of an OWL ontology and SQWRL 

queries were applied for deciding access requests as 

described in subsection V.A. Although this straight-forward 

way of putting the DL-based policy decision process into 

practice worked as expected, it had several drawbacks:  

For creating SQWRL queries, the Jess rule engine, a 

reasoner (Pellet
3
, in our case) and the Protegé-OWL API

4
 

were required. This results in a heavyweight implementation 

of the PDP with about 40 MB of libraries which counteracts 

the envisioned application scenario of AmI environments 

with potentially resource-restricted devices. Further, 

defining policies directly on the basis of OWL is possible 

but may appear cumbersome to policy administrators which 

are not used to semantic web technologies. 

In order to overcome these limitations, we split up the 

policy decision process into one part which is purely based 

on a simple XML structure and one part resolving the 

semantic information where necessary. So it is possible to 

run a lightweight PDP on resource-restricted devices while 

providing reasoning capabilities for resolving class 

expressions and individuals by a full-blown semantic PDP 

which can be hosted on a more powerful platform. For each 

policy domain, at least one such fully-equipped PDP is 

required while multiple lightweight PDPs can be spread 

across different platforms in the policy domain and 

connected to the fully-equipped PDP, as shown in Figure 3. 

Another benefit is that developers can write their policies in 

simple XML files and use semantic class expressions only 

for describing the target of a rule. The process of deciding 

an access request using our prototype thus works as follows: 

 

Full PDP

Policy (OWL)

Lightweight PDP

PEP

Lightweight PDP

PEP PEPPEP

Policy (XML)

Policy Resources

Access Request Flow
 

Figure 3 A policy domain with a PDP split up into one full and 

two lightweight versions. 

 
3 http://clarkparsia.com/pellet/ 
4 http://protege.stanford.edu/overview/protege-owl.html 

Developers do not have to formulate policies and meta-

policies in form of an ontology but rather can define a 

simple XML structure that includes class expressions in 

Manchester syntax in order to reference semantic 

information stored in external ontologies. When loading 

such a policy into the PDP, it is processed by a lightweight 

parser and then converted into an OWL ontology, using a 

pre-defined OWL template which reflects the policy model 

introduced in section IV. The result of this process is a 

complete ontology representing policies and meta-policies 

which is then loaded into the Pellet reasoning engine. 

The next step is then to ensure the conflict-freeness of 

meta-policies. This is done by adding the Impossible class 

introduced in subsection IV.D and checking it for 

satisfiability. In case this class is satisfiable, i.e. if a conflict 

between meta-policies has been detected, the policy 

developer should be informed about the inferred values of 

the imp.hasEffect property. As this step has not yet been 

integrated into the prototype it must currently be manually 

executed using the Protegé 4 ontology editor but a later 

integration into the PDP is planned, of course. After 

confirming the conflict-freeness of the model, the PDP 

keeps the policy specification in memory, both as a XML 

structure and as an ontology and is ready to evaluate access 

requests. This process of loading a policy into the PDP is 

shown in Figure 4. Compared to the illustrated process, a 

“lightweight” PDP which is not capable of any reasoning 

functionality would only execute steps 1 and 2a and as a 

consequence would only able to decide access requests 

whose evaluation does not involve any class expressions.  
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Policy

(XML)
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2a: Load Policy Model

1: Load XML

2b: Load ontology TBox

Pellet Reasoner 

checks satisfiability
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Figure 4 Process of loading a XML-formatted policy, 

converting it into an ontology and checking meta-policies for 

conflict-freeness. 

When an access request reaches the PDP, it first extracts 

all available information about the policy target from the 

request and evaluates the policy, using XPath queries to 

retrieve the relevant rules and OWL-API
5
 together with the 

Pellet reasoner to test class expressions from the policy 

target against the information contained in the access 

request. After the policy has been evaluated to either permit 

or deny, the same evaluation is executed against the meta-

policies and the decision is classified as strict or defeasible, 

 
5 http://owlapi.sourceforge.net/ 



  

depending on the evaluation of the meta-policies. 

Summarizing, after replacing the SQWRL-based policy 

decision by the more lightweight combination of XPath and 

the Pellet reasoner, our prototype fulfills all functionality we 

described above by means of a generic DL-based model and 

shows characteristics which suggest its suitability for AmI 

use cases: the implementation is based on Java 1.6 and 

OSGi, the footprint of the lightweight version of the PDP is 

about 8MB which is reasonable for most embedded devices 

hosting a Java runtime. The full-featured PDP (of which at 

least one must be present in a policy domain) has a 

significant larger footprint of about 50 MB, mainly caused 

by the Pellet and OWL-API libraries. 

VII. CONCLUSION AND OUTLOOK 

In this paper we presented an approach on resolving 

conflicts between multiple policy domains by means of 

meta-policies. Policies and meta-policies have been 

specified on the basis of description logics – the logical 

foundation of the semantic web. This way, we foster the 

integration of access control policies and semantic 

information as it is used in many ambient intelligence 

systems, for example. By defining meta-policies, developers 

can formulate invariants which are guaranteed to be 

enforced even in the case of conflicts. Taking advantage of 

the underlying description logics, the set of meta-policies 

can be checked automatically for conflict-freeness using a 

standard semantic web reasoner so developers can be 

informed about conflicts in their meta-policies and possible 

resolution strategies. As a result of our approach, developers 

can build systems where services can reside in multiple 

policy domains without unintentionally overwriting 

security-relevant decisions of one domain by those of 

another. This is essential in all architectures where services 

from different authorities shall be combined, for example in 

traditional business SOAs as well as in more dynamic AmI 

environments. 

The prototypical implementation of our approach showed 

that the DL-based model can be realized in a straight-

forward way by means of OWL ontologies, SQWRL queries 

and the Pellet reasoner in combination with the Jess rule 

engine and the OWL-API. It became however also obvious 

that the overhead of semantic web libraries is not tolerable 

for most resource-restricted devices and as a consequence, 

an implementation strategy featuring a reduced lightweight 

PDP has been realized. 

For further testing, we expect to be able to integrate our 

approach into existing close-to-market Ambient Intelligence 

systems such as the Hydra middleware. As part of our future 

work, we will extend our prototype by protocols for joining 

and leaving policy domains as well as we aim to support 

arbitrary conditions in rules. A further possible extension is 

to not only return deny/permit decisions but rather add 

blurring modifiers for different data types so a compromise 

between full denial and allowance becomes possible. 
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