

Abstract—In upcoming ambient intelligence applications,

services provided by heterogeneous and often mobile platforms

are combined to build “intelligent” environments. As these

services are hosted within different administrative domains,

equally respecting security policies of all services becomes a

challenge and conflicts between the policies of different

domains can occur. In this paper we propose an approach to

resolve conflicts between policies of different administrative

domains at runtime by means of meta-policies. The proposed

meta-policy model allows policy administrators to define

certain guarantees which must not be overwritten in any case,

thereby acting as invariant security properties. While decisions

characterized as strict according to the meta-policy are

guaranteed to be enforced, decisions classified as defeasible

may be overwritten by policy decisions created by other

domains. We present a use case example illustrating how the

approach provides a resolution of cross-domain conflicts,

describe the underlying policy model based on description

logics, explain how access requests are decided and inter-

domain conflicts handled and discuss a proof-of-concept

implementation of our approach.

I. INTRODUCTION

With the advent ambient intelligence (AmI) environments

and powerful mobile devices like smart-phones, more and

more services are not only hosted by web servers that are

placed in a fixed network infrastructure but also by mobile

embedded platforms. As these services roam across different

networks and are provided in different administrative

domains, defining access control policies for them becomes

a critical issue. Developers of traditional web services make

use of access control policy languages like XACML [1] in

order to specify who is allowed to access the service under

certain conditions. However, the assumption of XACML as

well as many other access control languages is that a service

is always under control of a single administrative domain.

While this assumption is feasible for fixed services, it does

not fit the needs of mobile services which are potentially

used in different environments, each comprising its own

policy domain. If developers combine services from

different administrative domains in order to create value-

added services, the value-added service needs to abide by

the security policies of each of the combined domains. Also,

when mobile devices roam across different environments

they become subject to multiple policy domains at the same

time. In both cases, the security policies of multiple domains

must be applied to a service. As the policies of different

domains might contradict each other, mechanisms for

recognizing and resolving such conflicts are critical. Simply

preferring the policies of one of the domains is however not

a satisfying solution. In that case, the policies of other

domains would inadvertently be overridden and as a result

the effective security properties of a system would be

unclear to developers and users. So, while on the one hand

detecting and solving inter-domain policy conflicts is a

necessity, developers need to be sure of guaranteed security

properties of their system which must not be overridden at a

later time.

Another drawback of most current access control policy

languages is that they rely on predefined identifiers for

subjects and resources. Mobile services are however

discovered and selected in an ad-hoc fashion and many AmI

middleware systems make use of semantic service

descriptions for that purpose. It becomes therefore difficult

for policy administrators to specify policies at design time

without knowing the actual entity to which the policies shall

be applied later at run time. In order to overcome this

limitation, several authors have proposed an integration of

semantic knowledge and policies – an approach we deem as

undoubtedly sensible and considered in our work.

Summarizing, in order to deal with the requirements of

mobile services and overlapping policy domains, access

control policies need to be extended by semantic

descriptions and the ability to deal with inter-domain

conflicts while preserving guaranteed security properties as

wished by the developer. In this paper we therefore propose

a model of access control policies on the basis of

Description Logics (DL) which are the basis of knowledge

representations in semantic web technologies (SWT), e.g. in

ontologies. In order to cope with policy decisions from

multiple domains and the resulting possible conflicts, we

add the concept of meta-policies allowing administrators to

specify policy invariants which are guaranteed to be

enforced even in the case of conflicts. On the basis of this

model we describe how a Policy Decision Point (PDP) can

answer access requests using (decidable) extensions of DL.

As a result of this policy decision process, a Policy

Enforcement Point (PEP) is informed about the actual effect

which has to be enforced as well as a classification of this

effect, either as strict or defeasible, determining whether the

decision must be enforced or may be overwritten in the case

of conflicts. In case a conflict cannot be resolved due to

several conflicting strict decisions, a compensating action

can be specified – usually instructing the service to leave the

conflicting policy domain or to simply log the conflict.

In the following section we review work related to ours

and then present an Ambient Intelligence use case

motivating our approach in section III. In section IV we

describe how we modeled access control policies using

description logics and introduce the concept of meta-policies

for defining invariable policy decisions. Section V explains

how access requests are decided on the basis of description

logics and how conflicts between policy domains are

A Description Logic based Approach on

Handling Inter-Domain Policy Conflicts using

Meta-Policies

Julian Schütte, Tobias Wahl, Fraunhofer SIT, Germany

detected and handled. The practicability of our approach has

been tested by means of a proof-of-concept prototype whose

design is presented in section VI and section VII concludes

the paper.

II. RELATED WORK

Work related to ours is on the one hand concerned with the

integration of semantic web technology (SWT) into policies

and on the other hand with detecting and resolving conflicts

by means of meta-policies:

The need for considering semantic information in policies

has been recognized by various authors and a number of

approaches have been proposed – ranging from optional

semantic extensions of existing policy languages to

completely semantic-based policy frameworks:

In [14] an approach of using semantic attributes in XACML

is described. The authors propose using SWRL rules to infer

implicit information like “is full age” from explicit facts

provided in an access request like “age>18”. The authors of

[12] aim at the same goal but use RDF triplets to describe

attributes in XACML. Both approaches work on RDF

triplets and are thus not able to deal with advanced concepts

like cardinalities which are supported by OWL. In [15], the

combination of XACML and OWL is used to realize a role-

based access control model. Although the approach of using

class expressions for describing policy subjects and

resources is promising, the suggestion of using XACML’s

obligation element to add inferred axioms to the knowledge

base during the policy decision process appears a bit

intricate.

Further, in [10] individuals from an ontology can be used in

a WS-POLICY definition and are compared against the

information contained in an access request by predefined

custom comparison operators like “less than” or “is

subclass of”. From these approaches we adopt the idea of

integrating semantic attributes into policies, yet our

approach of using class expressions overcomes the

complexity of SWRL rules and the limitations of RDF

triplets, does not rely on custom operators and also does not

require modifications of the knowledge base during the

decision of an access request.

Other authors have worked towards realizing complete

policy frameworks on the basis of description logics. In [2]

Kolovski presents a formalization of XACML in so-called

“defeasible description logic” (DDL
-
) which he proposes to

use for analysis purposes. Although the policy structure we

use is similar to the one proposed in [2], our formalization

considers ordering of rules and supports more rule-

combining algorithms. Also, we our goal was to put the

formal policy model into practice using standard semantic

web technologies.

Rein [16] [11] is a distributed policy framework which

defines policies using the Notation3
1
 language and

ontologies expressed in OWL. A related approach is

followed by the policy framework of the KAoS [21] project

where DAML, the predecessor of OWL, is used to define

policy ontologies and builds the basis for policy analysis and

–decision services. However, these frameworks do not deal

with conflicts between the on pervasive systems policies of

different administrative domains.

The policy framework Ponder [9] does not consider

semantics but organizes policy domains hierarchically and

resolves conflicts between their policies by either giving

1 http://www.w3.org/DesignIssues/Notation3

precedence to the rules of the most specific domain or by

defining a default decision which must be applied to all

child domains of the root domain [20]. This approach is

however not suited for resolving conflicts between policies

which have been stated by different authorities, as it

implicitly allows one domain to override the policies of

another one. Different types of policy conflicts and

strategies on how to detect them either statically (at design

time) or dynamically (at run time) have been discussed in

[19], yet without providing methods for resolving such

conflicts.

The idea of meta-policies has been discussed in depth in [7]

and [8]. This idea has been put into practice to a limited

extend by the abovementioned domain-wide default policy

decision in the Ponder framework. In [18] meta-policies

have been applied for resolving conflicts on a set of policies,

in order to enforce constraints such as separation of duty.

Yet, none of these approaches provides a solution for

resolving conflicts between different administrative policy

domains which is the focus of this paper.

III. SCENARIO

In this section we introduce a brief use case example to

motivate the problem addressed in this paper and to

illustrate our approach on solving it. The problem of

conflicting policy domains can occur in many different

scenarios, for example when creating value-added services

which combine services from multiple administrative

domains in an enterprise SOA. As in our work we put the

focus on services provided by mobile devices in pervasive

systems we have chosen a more future-oriented use case

from this kind of application domain. Yet, the solution as

discussed in the rest of this paper is not limited to this

scenario.

We assume Alice owns a smart-phone which she uses in

different environments, for example in an environment

denoted as @home for private purposes and in environment

@work for business tasks. These environments are not

necessarily bound to a physical location but rather depend

on the purpose of the current task and may thus overlap, i.e.

be both active at the same time. Depending on the

environment in which it is used, the device has to comply

with different access control policies: while Alice uses the

device in environment @home, she allows access to

different services provided by the device: for everybody in

the local network, access to an AdminService for controlling

the settings of the phone should be granted. Further, a

Camera service and LocationTracker service should be

accessible for Alice’s family members. So, a simplified

policy for the @home environment could look as follows:

Figure 1 Access request to a service results in conflict between

policy domains.

On the other hand, if the smart-phone is used in the

@work environment it has to deal with potentially sensible

information, so the administrator of Alice’ company has set

the following policies: access to all Camera- and

LocationTracker services has to be denied and it is required

that at least an administrator of the company has access to

the phone’s AdminService in order to be able to apply

further configurations. The @work policy could thus look as

follows:

In case both environments are active and thus policies of

both domains shall become effective, conflicts between the

policies of @home and @work can occur: for example, if a

family member of Alice wants to locate her using the

LocationTracker, the @home policy would allow this

request while the @work policy would refuse it (c.f. Figure

1) - the same applies if Alice would be trying to use the

camera service. Also, if an administrator from Alice’

company would request access to her phone’s AdminService

– a legitimate request according to the @work policy, the

@home policy would be indifferent and could refuse the

request, depending on the default decision.

These types of cross-domain policy conflicts are likely to

occur more often as mobile and multi-purpose devices

increasingly provide services to their environment, as it is

the vision of Ambient Intelligence. A simple approach to

this problem would be to require environments to be

disjunct so that only one policy domain is applicable at a

time. However, this contradicts the idea of having multi-

purpose devices roaming across different environments.

Another approach which is also followed by policy

frameworks like Ponder2
2
 is to hierarchically structure

policy domains and then either prefer the most specific or

the most generic policy. Yet, a significant drawback of these

approaches is that they allow policy domains to override

rules set by other domains without any limitations. As a

result, policy administrators would not be able to tell if and

when their policies might become overwritten by those of a

2 http://www.ponder2.net

different domain and thus - in contrast to a single-domain

scenario – policies could not be regarded as “guaranteed

security properties” of a system anymore.

Instead of structuring policy domains and hardcoding the

resolution of conflicts based on that structure, our approach

focuses on using meta-policies in order to allow

administrators to define certain invariants which must not be

overwritten by different policy domains. Referring to our

example, we could assume that Alice has defined the

following meta-policy in order to avoid that she gets locked

out from her own phone:

This meta-policy is much more specific than the original

policy and only requires that the AdminService stays

accessible for Alice herself. As the meta-policy works as an

invariant, it cannot be overwritten by any other policy

domain. Also the company’s administrator could specify a

meta-policy to ensure access to the AdminService and to

restrict the usage of Camera and LocationTracking service

under all circumstances:

By adding such meta policies, conflicts between the two

policy domains can now be handled: access requests to the

AdminService are granted to administrators of the company

and to Alice herself (fulfilling the guarantees set by the meta

policies), but not to family members of Alice (the @home

policy’s grant decision is overwritten by the more restrictive

@work policy here). The Camera service and the

LocationTracker are blocked for everyone, as required by

the @work meta-policy.

In the following sections, we will describe the how the

necessary components for realizing such a scenario can be

designed: the structure of policies and meta-policies, the

policy decision process and a possible implementation based

on semantic web technology.

IV. POLICY AND META-POLICY MODEL

We use Description Logics to describe a formal structure

of policies and meta-policies. This way, we facilitate an

integration of policies with external knowledge bases in the

form of ontologies and thereby separate domain knowledge

from the rules which reflect the security model of an

application. Domain knowledge describes for instance

properties of authorization methods, known vulnerabilities

or the strength of cryptographic protocols. This domain

knowledge may change over time even if the security

requirements of an application are the same as new

cryptographic mechanisms become available or weaknesses

in existing ones become public. Integrating this domain

knowledge into policy descriptions is desirable as it allows

administrators specify policies at a higher, more

understandable level and to access all semantic service

descriptions that are already available in the application. The

policy structure we introduce in this paper is basically

derived from XACML [1] and aligns in parts with the

formalization provided by Kolovski [2]. Some details of the

XACML specification have been abstracted away for clarity

and meta-policies for defining policy invariants have been

added. The notation used in the following subsections is

based on the Description Logic terminology as described in

[3].

A. Description Logics

At first, we provide a brief overview of the terminology

and the main concepts of description logics (DL) which we

use in the rest of this paper. DL comprises logic languages

which are subsets of first order logic and which have mainly

been designed for knowledge representations. The term

“description logics” does not refer to a single dedicated

logic language but rather to a family of logics which follow

the same formalism but show different levels of

expressivity. The two most important differences between

first order logic and DL are decidability and the open-world-

assumption (OWA): in contrast to first order logic, all

description logics are decidable which makes them attractive

to be used in the context of policy decisions. Indeed,

although they are decidable, most reasoning problems show

at least EXPTIME complexity but practice has shown that

they can be efficiently solved in knowledge bases of

reasonable size. While first order logic considers facts which

are not contained in the model as non-existent – i.e. it

assumes a closed world – DL is based on the open world

assumption. It assumes the model to be incomplete and thus

does not have any knowledge about facts which are not

contained in the model. As a result of the OWA, it is not

possible to infer negation of a fact from its absence in the

model.

A knowledge base is modeled in DL by concepts, roles

and individuals (these terms relate to classes, properties and

objects in OWL and both terminologies are used

interchangeable in this paper). The knowledge domain is

modeled by a hierarchy of concepts which are connected by

roles. Individuals are then assigned to these concepts and

thereby build a specific description within the scope of the

knowledge domain.

With the advent of semantic web technologies,

description logics have gained importance as they build the

underlying formalism of ontology languages like OWL – for

example, OWL-DL v2 corresponds to the description logic

 which supports hierarchy of roles (H), object

value restrictions (O), inverse roles (I), cardinality

restrictions (N) and data types (D). This specific DL is also

supported by the Pellet reasoner which we used in our

prototype implementation, as explained below. Description

logics and ontologies themselves do not allow expressing

rules which makes some modeling tasks tedious and verbose

(e.g. transitivity of properties) and can further be a limitation

in cases where DL alone is not expressive enough. The rule

language SWRL is based on DL and allows specifying rules

over facts from OWL ontologies. Although SWRL itself is

much more expressive than DL and can lead to non-

decidable models it can be used in a “DL-safe” way that

does not go beyond the expressivity of DL, as described in

[5].

The concepts of description logics will be used in this

paper for describing the policy model and the DL-based

languages OWL, SWRL and its query extension SQWRL

have been used for the prototype implementation of the

policy model and a respective PDP.

B. Description logic based policy structure

The policy structure we use is similar to that of XACML

in that we describe a policy as a rule combining algorithm

and a set of rules, each with a target description and an

effect. However, details of XACML which are not necessary

within the scope of this paper have been abstracted away

and further, in order to reflect the order of rules that is

needed for some of the rule combining algorithms, we

introduced an injective functional hasNumber relation that

assigns a number to each rule. A policy is thus modeled as

the following DL concept

where rules, targets and effects are denoted by the

following class expressions:

C. Meta-policies

In addition to policies, we specify a model for meta-

policies which can be thought of a “policies about policies”

and are used to formulate guaranteed properties which must

be fulfilled by the actual policies. On the one hand, these

guarantees can be used by policy administrators as

invariants to check their policies against, thereby for

example verifying that a company's policy complies with

certain usage restrictions as stated by the company's

regulations. On the other hand, we propose using meta-

policies in order to resolve conflicts between different

policy domains, as described below in section V. A meta-

policy comprises a target definition, an effect and an

optional compensation which defines an action that must be

executed in case the meta-policy's decision becomes

overwritten. While target and effect are defined as above,

Compensation is defined by the set of described nominals

{comp1,..,compn} each referring to the (unique) name of a

compensating action (e.g., a Java class name) whose

purpose is described below. A meta-policy is thus denoted

by the following class expression Meta and its two

subclasses PermitMeta and DenyMeta, comprising those

meta-policies with a permit and a deny effect, respectively:

A specific meta-policy is then defined as a subclass of

either DenyMeta or PermitMeta and contains only the

specification of a target, as the following exemplary meta-

policy DenyScientist which denies access to all targets

described as individuals of the concept Scientist.

D. Conflict-freeness of meta-policies

The purpose of meta-policies as proposed in this paper is

to state policy invariants which are guaranteed to be

enforced, even in the case of conflicts. Obviously, these

invariants must not contradict themselves as otherwise a

policy decision would be classified as both strict and

defeasible and the PEP would be indifferent about whether

the decision is compatible with other domains or not.

However, simply leaving it up to the developer to ensure

conflict-freeness of meta-policies is not a sensible option as

this would require the developer to manually identify every

potential conflict in a (potentially large) set of meta-policies

– a task which is tedious and becomes even more difficult as

relevant information is implicitly “hidden” in ontologies.

For instance, if the subjects of two meta-policies are

described by the DL concepts Scientist and ProjectManager

it is not immediately visible if these two meta-policies may

apply to the same subject or not. Only if the ontology

explicitly declares Scientist and ProjectManager as disjunct

concepts one can be sure that both meta-policies are never

applicable at the same time and that no conflict can occur. In

order to support developers in ensuring the conflict-freeness

of their meta-policies, the DL-based model can be used as

follows to detect possibly conflicting meta-policies:

The idea of checking the model for possible conflicts is to

construct a class that is only satisfiable if a possible conflict

between meta-policies exists and that helps to detect

conflicting meta-policies (the other way around, a class that

is only satisfiable if all meta-policies are conflict-free would

appear more natural but is cumbersome to realize because of

the underlying open-world-assumption). We call this class

Impossible and add it to the policy model, together with an

individual imp of that class. Both are of course only added

for the purpose of detecting conflicts and are removed after

the validation process as otherwise the PDP had to work

with a conflict-free, yet unsatisfiable (and thus unusable)

model. The Impossible class is constructed as a subclass of a

pair of PermitMeta and DenyMeta classes and the individual

imp is an instance of it:

In case the meta-policies do not contain any possible

conflicts the Impossible class becomes unsatisfiable and as a

consequence the model will be inconsistent because the imp

individual cannot be assigned to an unsatisfiable class. If

however possible conflicts exist between meta-policies, the

model will be satisfiable and the reasoner will infer

properties for the imp individual which allow a developer to

identify the source of the conflict so it can be removed.

To illustrate this, we give a brief example, assuming that

two meta-policies PermitProjectManager and DenyScientist

exist – the former allowing a certain request for all subjects

of type ProjectManager and the latter denying the same

request for all subjects of type Scientist. As mentioned

before, the source of a conflict lies here in the fact that a

subject might exist that is both, Scientist and

ProjectManager at the same time (which might not be

immediately obvious in more complex models). In this case,

the reasoner will identify the conflicting meta-policies by

assigning the imp individual to them and the inferred

properties of imp reflect the values of the access request

which would lead to the conflict. Figure 2 shows which

values of an access request would lead to a possible conflict

between PermitProjectManager and DenyScientist. The

cause of the conflict itself is identified by the two different

values for the hasEffect property.

Figure 2 Properties of imp individual, explaining a possible

conflict.

From this information, explanations could be generated to

inform the developer about the possible conflict, its cause

and possible resolutions of it.

V. POLICY DECISION

In the previous subsections we described the structure of

rules, policies and meta-policies by means of DL. Based on

this structure, we will now describe how an access request is

decided using semantic web technology (subsection A) and

how conflicts between different policy domains are detected

and solved (subsection B).

A. Decisions of a single domain

When a subject wants to access a resource, an access

request is intercepted by the PEP and forwarded to the PDP.

The PDP evaluates the policy and returns an access

decision, determining whether the access is permitted or

denied and whether the decision may be overwritten by

other policy domains. The PEP is then responsible for

enforcing the PDP's decision. We denote an access request

as the triplet representing a target

target=<(subject),(resource),(action)> and a policy

decision as decision=<{permit,deny},{strict,defeasible},

compensation>.

As every policy can comprises several rules with different

effects, the decision process must support overriding the

decision of one rule by that of another one (in XACML, this

procedure is determined by the rule-combining-algorithm

element). As overriding existing facts in a knowledge base

would require non-monotonic reasoning which is not

supported by plain DL, it is not possible to decide a policy

request only on the basis of DL. However, query languages

like SPARQL and SQWRL allow retrieving the relevant

facts from the knowledge base without requiring non-

monotonic reasoning. We therefore propose using SQWRL

[6] queries for evaluating access requests – an extension to

the SWRL [4] rule language which applies non-monotonic

operations only to the result set of a SWRL query and does

not write them back into the knowledge base. For each of

the supported rule combining algorithms there is a separate

SQWRL query and each of them is executed during the

policy decision process. As an example, the SQWRL query

for the denyOverrides algorithm looks as follows; the other

queries for permitOverrides and firstApplicable are

constructed alike and omitted here for the sake of brevity:

For each access request these queries return a single effect

value (deny or permit) which is communicated back to the

PEP as the final decision. In a second step, the PDP needs to

evaluate whether the decision should be classified as strict

(i.e. it has to be enforced in every case) or defeasible (i.e. it

can be combined with other domains and possibly be

overridden). For this purpose, the same access request is

tested against the set of meta-policies, using a similar

SQWRL query:

If this query returns an empty result set, the access request

is not covered by any meta-policy and is classified as

defeasible by the PDP. If the query results in the same effect

as the previous evaluation of the policy, the decision is

classified as strict and the PDP returns the effect and the

classification to the PEP. In case this query results in a

different effect than the result of the policy evaluation an

internal conflict occurs, i.e. the policy contradicts its meta-

policy. If that should happen, the decision of the meta-policy

is preferred and classified as strict, thereby ensuring that it

always the meta-policy which determines the final decision.

In general, developers might want to avoid such internal

conflicts as the effective results of a policy are not easily

recognizable from the model anymore if they become

overridden by the meta-policy, thereby making the policy

model harder to understand and maintain. Detecting and

removing internal conflicts statically (i.e. at design time)

using DL-based techniques would be possible (e.g. by

constructing a subclass of and checking

for its unsatisfiability) but has not been implemented in the

prototype for two reasons: at first, internal conflicts might

be wanted, for example in scenarios where a set of pre-

defined meta-policies specifies the overall access rights for a

whole company and each department of the company may

define its own set of policies within the scope of these

overall meta-policies. Second, being able to statically check

for internal conflicts implies that the whole policy has to be

specified invariably on the basis of DL and facts which are

known at design time. This would be a serious limitation as

it would not be possible to include conditions referring to

runtime information like time into policies – an option that

we certainly did not want to exclude. Rather, our approach

envisions detecting internal conflicts upon their occurrence

at runtime, preferring the meta-policy’s decision and

logging the issue so administrators are informed about

possible inconsistencies in their policy model. This way, it is

possible to include data that is only available at runtime into

policy decisions while ensuring that meta-policies act as

invariants which are guaranteed to be enforced.

B. Decisions of multiple domains

Up to now, we have only considered the traditional case

of a policy decision within a single domain. Now, we will

look at PEPs which reside in multiple policy domains at the

same time and how they can make use of meta-policies to

handle conflicting policy decisions by these domains. We

assume that a PEP is originally associated to an initial PDP

and then can connect to further PDPs at runtime, as the

illustrated by domains @home and @work in the example

above. If the PEP is controlled by multiple policy domains,

it will forward an access request to each domain’s PDP and

will subsequently receive a number of decisions, each

consisting of an effect, a classification as strict or defeasible

and a compensation action, as explained in the previous

section. Conflicts between these decisions arise if one PDP

decides to allow the access request while another PDP

denies the request. The PEP then uses the strict/defeasible

classification to resolve this conflict as follows:

If all conflicting decisions are classified as defeasible, all

domains accept overriding their policies in support of

combined policy domains and the PEP can simply select and

enforce one of the decisions, for example that of the PDP

which was first connected to the PEP. In case only one of

the conflicting decisions is marked as strict while all others

are defeasible, it is of course the strict decision that is

enforced by the PEP. If however multiple conflicting

decisions are classified as strict, the consequence is that

these policy domains cannot be combined with each other –

otherwise invariants set by the meta-policies would be

violated. The only option in this case is to disconnect the

PEP from the conflicting PDPs, thereby releasing the

linkage of the conflicting policy domains. So, the PEP

selects the first strict decision and executes the

compensating action of all further conflicting decisions

being marked as strict. The compensating action refers to a

function which immediately removes the PEP from the

conflicting PDPs and whose implementation depends of

course on the underlying protocols used for combining and

leaving domains which are not in the scope of this paper and

will therefore not be discussed in more detail. As a result

from leaving a policy domain, all services provided in that

domain will not be accessible anymore. Applied to the

example above, if @work and @home were incompatible,

Alice had to leave either of them and consequently the

services she provides could not be used from either her

home- or her company domain.

This way, it can be guaranteed that the invariants defined

by meta-policies are not violated by the PEP – at the price of

different non-combinable domains in the case of conflicting

strict decisions.

VI. PROTOTYPE

The above described policy model, decision process,

classification as strict/defeasible and the validation of

conflict-free meta-policies have been implemented in form

of a proof-of-concept prototype in order to test the practical

applicability of the approach. In this section, we present the

design of the prototype and discuss the insights which were

gained during the implementation.

In a first step, the DL-based policy model from section IV

has been realized in form of an OWL ontology and SQWRL

queries were applied for deciding access requests as

described in subsection V.A. Although this straight-forward

way of putting the DL-based policy decision process into

practice worked as expected, it had several drawbacks:

For creating SQWRL queries, the Jess rule engine, a

reasoner (Pellet
3
, in our case) and the Protegé-OWL API

4

were required. This results in a heavyweight implementation

of the PDP with about 40 MB of libraries which counteracts

the envisioned application scenario of AmI environments

with potentially resource-restricted devices. Further,

defining policies directly on the basis of OWL is possible

but may appear cumbersome to policy administrators which

are not used to semantic web technologies.

In order to overcome these limitations, we split up the

policy decision process into one part which is purely based

on a simple XML structure and one part resolving the

semantic information where necessary. So it is possible to

run a lightweight PDP on resource-restricted devices while

providing reasoning capabilities for resolving class

expressions and individuals by a full-blown semantic PDP

which can be hosted on a more powerful platform. For each

policy domain, at least one such fully-equipped PDP is

required while multiple lightweight PDPs can be spread

across different platforms in the policy domain and

connected to the fully-equipped PDP, as shown in Figure 3.

Another benefit is that developers can write their policies in

simple XML files and use semantic class expressions only

for describing the target of a rule. The process of deciding

an access request using our prototype thus works as follows:

Full PDP

Policy (OWL)

Lightweight PDP

PEP

Lightweight PDP

PEP PEPPEP

Policy (XML)

Policy Resources

Access Request Flow

Figure 3 A policy domain with a PDP split up into one full and

two lightweight versions.

3 http://clarkparsia.com/pellet/
4 http://protege.stanford.edu/overview/protege-owl.html

Developers do not have to formulate policies and meta-

policies in form of an ontology but rather can define a

simple XML structure that includes class expressions in

Manchester syntax in order to reference semantic

information stored in external ontologies. When loading

such a policy into the PDP, it is processed by a lightweight

parser and then converted into an OWL ontology, using a

pre-defined OWL template which reflects the policy model

introduced in section IV. The result of this process is a

complete ontology representing policies and meta-policies

which is then loaded into the Pellet reasoning engine.

The next step is then to ensure the conflict-freeness of

meta-policies. This is done by adding the Impossible class

introduced in subsection IV.D and checking it for

satisfiability. In case this class is satisfiable, i.e. if a conflict

between meta-policies has been detected, the policy

developer should be informed about the inferred values of

the imp.hasEffect property. As this step has not yet been

integrated into the prototype it must currently be manually

executed using the Protegé 4 ontology editor but a later

integration into the PDP is planned, of course. After

confirming the conflict-freeness of the model, the PDP

keeps the policy specification in memory, both as a XML

structure and as an ontology and is ready to evaluate access

requests. This process of loading a policy into the PDP is

shown in Figure 4. Compared to the illustrated process, a

“lightweight” PDP which is not capable of any reasoning

functionality would only execute steps 1 and 2a and as a

consequence would only able to decide access requests

whose evaluation does not involve any class expressions.

Policy Model

(Tbox in

Manchester Syntax)

Parse XML

Policy

(XML)

Transform Policy

Model

to OWL Manchester

Syntax

2a: Load Policy Model

1: Load XML

2b: Load ontology TBox

Pellet Reasoner

checks satisfiability

3: Load ontology

Figure 4 Process of loading a XML-formatted policy,

converting it into an ontology and checking meta-policies for

conflict-freeness.

When an access request reaches the PDP, it first extracts

all available information about the policy target from the

request and evaluates the policy, using XPath queries to

retrieve the relevant rules and OWL-API
5
 together with the

Pellet reasoner to test class expressions from the policy

target against the information contained in the access

request. After the policy has been evaluated to either permit

or deny, the same evaluation is executed against the meta-

policies and the decision is classified as strict or defeasible,

5 http://owlapi.sourceforge.net/

depending on the evaluation of the meta-policies.

Summarizing, after replacing the SQWRL-based policy

decision by the more lightweight combination of XPath and

the Pellet reasoner, our prototype fulfills all functionality we

described above by means of a generic DL-based model and

shows characteristics which suggest its suitability for AmI

use cases: the implementation is based on Java 1.6 and

OSGi, the footprint of the lightweight version of the PDP is

about 8MB which is reasonable for most embedded devices

hosting a Java runtime. The full-featured PDP (of which at

least one must be present in a policy domain) has a

significant larger footprint of about 50 MB, mainly caused

by the Pellet and OWL-API libraries.

VII. CONCLUSION AND OUTLOOK

In this paper we presented an approach on resolving

conflicts between multiple policy domains by means of

meta-policies. Policies and meta-policies have been

specified on the basis of description logics – the logical

foundation of the semantic web. This way, we foster the

integration of access control policies and semantic

information as it is used in many ambient intelligence

systems, for example. By defining meta-policies, developers

can formulate invariants which are guaranteed to be

enforced even in the case of conflicts. Taking advantage of

the underlying description logics, the set of meta-policies

can be checked automatically for conflict-freeness using a

standard semantic web reasoner so developers can be

informed about conflicts in their meta-policies and possible

resolution strategies. As a result of our approach, developers

can build systems where services can reside in multiple

policy domains without unintentionally overwriting

security-relevant decisions of one domain by those of

another. This is essential in all architectures where services

from different authorities shall be combined, for example in

traditional business SOAs as well as in more dynamic AmI

environments.

The prototypical implementation of our approach showed

that the DL-based model can be realized in a straight-

forward way by means of OWL ontologies, SQWRL queries

and the Pellet reasoner in combination with the Jess rule

engine and the OWL-API. It became however also obvious

that the overhead of semantic web libraries is not tolerable

for most resource-restricted devices and as a consequence,

an implementation strategy featuring a reduced lightweight

PDP has been realized.

For further testing, we expect to be able to integrate our

approach into existing close-to-market Ambient Intelligence

systems such as the Hydra middleware. As part of our future

work, we will extend our prototype by protocols for joining

and leaving policy domains as well as we aim to support

arbitrary conditions in rules. A further possible extension is

to not only return deny/permit decisions but rather add

blurring modifiers for different data types so a compromise

between full denial and allowance becomes possible.

REFERENCES

[1] Tim Moses (editor), “eXtensible Access Control Markup Language

(XACML), Version 2.0”, OASIS Standard, February 2005

[2] V. Kolovski, J. Hendler, B. Parsia, „Formalizing XACML Using
Defeasible Description Logics“, in Proceedings of the 16th

international conference on World Wide Web, 2007, pp. 677–686

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-

Schneider (editors), “The Description Logic Handbook: Theory,

Implementation, and Applications”, Cambridge University Press,
2003, ISBN 0521781760

[4] I. Horrocks et. al. (editors), “SWRL: A Semantic Web Rule Language

Combining OWL and RuleML”, W3C Member Submission, May
2004

[5] B. Parsia and E. Sirin and B. C. Grau and E. Ruckhaus, and D.

Hewlett, “Cautiously approaching SWRL”, Preprint submitted to
Elsevier Science, 2005.

[6] M. O’Connor, .A. Das, “SQWRL: a Query Language for OWL”, in

Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2009), October 2009

[7] H. H. Hosmer, “Metapolicies I”, in ACM SIGSAC Review, 10(2-3),

pp. 18–43, 1992, Special issue on Issues '91: data management
security and privacy standards.

[8] H. H. Hosmer, “Metapolicies II”, in Proceedings of the 15th National

Computer Security Conference, pp. 369–378. October 1992.
[9] K. Twidle, N, Dulay, E. Lupu, M. Sloman, “Ponder2: A Policy

System for Autonomous Pervasive Environments”, in Proceedings of

the Fifth International Conference on Autonomic and Autonomous

Systems (ICAS), 2009

[10] K. Verma, R. Akkiraju, R. Goodwin, „Semantic Matching of Web

Service Policies“, in Proceedings of the Second Workshop on SDWP,
2005

[11] L. Kagal, T. Finin, A. Joshi “A Policy Based Approach to Security

for the Semantic Web”, in The Semantic Web – ISWC, 2003
[12] E. Damiani, S. De Capitani di Vimercati, C. Fugazza, P. Samarati,

“Extending Policy Languages to the Semantic Web”, in Proceedings

of the International Conference on Web Engineering, pp. 330-343,
2004

[13] V. Kolovski, J. Hendler, B. Parsia, “Analyzing web access control

policies”, in Proceedings of the 16th International Conference on
World Wide Web (WWW), 2007

[14] T. Priebe, W. Dobmeier, C. Schläger, N. Kamprath, „Supporting

Attribute-based Access Control in Authorization and Authentication
Infrastructures with Ontologies”, in Proceedings of the 1st

International Conference on Availability, Reliability and Security

(ARES), 2006

[15] R. Ferrini, E. Bertino, “Supporting RBAC with XACML+OWL”, in

Proceedings of the 14th ACM symposium on Access control models
and technologies (SACMAT), pp. 145-154, 2009

[16] L. Kagal, “The Rein Policy Framework for the Semantic Web”,

http://dig.csail.mit.edu/2006/06/rein/, 2006
[17] W3C Recommendation, “OWL 2 Web Ontology Language”,

http://www.w3.org/TR/owl2-overview/, 2009

[18] T. Dursu, “A Generic Policy-Conflict Handling Model”, in
Proceedings of Computer and Information Sciences (ISCIS), 2005

[19] N. Dunlop, J. Indulska, K. Raymond, “Dynamic conflict detection in

policy-based management systems”, in Enterprise Distributed Object
Computing Conference, IEEE International, 2002

[20] G. Russello, C. Dong, N. Dulay, “Authorisation and Conflict
Resolution for Hierarchical Domains”, in Proceedings of the 8th IEEE

International Workshop on Policies for Distributed Systems and

Networks (POLICY), 2007
[21] A. Uszok et.al., “KAoS Policy and Domain Services: Toward a

Description-Logic Approach to Policy Representation, Deconfliction,

and Enforcement”, in Proceedings of the 4th International Workshop
on Policies for Distributed Systems and Networks (POLICY), 2003

	Introduction
	Related Work
	Scenario
	Policy and meta-policy model
	Description Logics
	Description logic based policy structure
	Meta-policies
	Conflict-freeness of meta-policies

	Policy Decision
	Decisions of a single domain
	Decisions of multiple domains

	Prototype
	Conclusion and outlook
	References

