
Authentic Refinement of Semantically Enhanced
Policies in Pervasive Systems

Julian Schütte1, Nicolai Kuntze1, Andreas Fuchs1, and Atta Badii2

1 Fraunhofer Institute for Secure Information Technology SIT
2 IMSS, University of Reading

Abstract Pervasive systems are characterised by networked heteroge-
neous devices. To fulfill the security requirements of an application, these
devices have to abide by certain policies. However, as the contingent in-
teraction between devices in all possible contexts within evolving perva-
sive systems devices cannot be known at development time, policies can-
not be dedicated to concrete security mechanisms which might later not
be supported by the devices present in the network. Therefore, policies
need to be expressed at a more abstract level and refined appropriately
to suit applicable mechanisms at run time. In this paper we describe
how security policies can be combined with ontologies to support such
an automated policy refinement. As thereby policy decisions depend on
semantic descriptions, the correctness of these descriptions must be ver-
ifiable at a later time for policy decisions to be evidential. We therefore
propose Trusted Computing-based approaches on generating proofs of
correctness of semantic descriptions deployed in policies.

1 Introduction

Pervasive systems are dynamic infrastructures with heterogeneous devices un-
predictably joining and leaving the network. Due to their complexity and het-
erogeneity, traditional access-control techniques and hard-coded mechanisms for
communication protection come to their limits. Policies as a form of restricted
high-level programming have been used for decades to regulate access to re-
sources and have also been adapted for use with pervasive systems. Considering
the great variety of platforms present in a pervasive system, the aspect of dy-
namic policy refinement gains more and more importance. Policy refinement de-
notes the process of deviating concrete applicable mechanisms from an abstract,
high-level policy definition. Only if the level at which policies are specified is
sufficiently abstract, will it be possible to adapt devices and services in a way
to match the policy by finding a set of rules that is tailored to the capabilities
of the platform. Such a set of rules is called a refinement of a high-level policy
if its effect is an instance of the high-level policy effect. The integration of Se-
mantic Web Technology (SWT) and policies is a promising approach in order
to achieve a greater degree of abstraction, thereby facilitating the specification
of policies and decoupling them from the actual enforcing platform. However, it
must be considered that as soon as policies rely on external knowledge bases,

all information contained in the knowledge bases becomes security critical and
thus its correctness must be verifiable. A way to provide proof of semantic device
descriptions stated in ontologies is to let devices attest their semantic descrip-
tions. Attestation in this context provides a verifiable reporting of a platform
configuration that is based on an authenticated root of trust.
In this paper we propose combining semantic knowledge with policies to build
a security policy architecture for pervasive systems. We further present an ap-
proach to apply attestation of properties for generating evidence of the informa-
tion stored in knowledge bases in such a way that participants are able to verify
the policy decision process and the semantic knowledge used in it.
The paper is structured as follows: in section 2 reviews work related to ours. In
section 3 we then introduce an example scenario to motivate our approach. In
section 4 we give an overview of the main building blocks of our approach. Then,
in section 5 we introduce the policy model used and present the integration of
semantic knowledge. In section 6 we explain how the correctness of semantic
knowledge can be guaranteed and section 7 concludes the paper and outlines
future work.

2 Related Work

Work related to ours is concerned with the integration of SWT into policies as
well as refinement of high-level policies. The integration of semantic knowledge
and security policies has been recognised as a promising approach for de-coupling
the implementation from the actual behavior of a system. It has been shown
that semantic information can be integrated into existing policy languages like
XACML and WS-Policy [3,19]. Yet, these approaches do not propose using com-
plex class expressions as policy elements and thus do not achieve the level of
flexibility as provided by our proposed approach. Examples for policy frame-
works based on semantic policy representation are KAoS [18] and Rein(n) [7,5].
Rein(n) is based on rules written in the RDF-based rule language Notation3 3 and
has been used in [11] to implement a policy-controlled pervasive system. KAoS
represents even the policy structure itself in description logic (i. e. in DAML, the
antecedent of OWL) and makes use of the Java Theorem Prover4 in order to
integrate rules and variables which are not supported by plain DAML / OWL.
In [16], an overview of these two approaches, as well as the policy framework
Ponder2 is given. Ponder2 proposes a dedicated policy framework for pervasive
systems [17,2] but does not integrate semantic knowledge. In contrast to that,
the context-aware policy framework Proteus [15] features OWL for modeling
context conditions which provide the basis for access control decisions. However,
Proteus does not take refinements and negotiation of obligations into account.
Refinement of semantic policies is considered in [6] where an approach on refin-
ing high-level policies is presented,yet, without integrating negotiation between

3 http://www.w3.org/DesignIssues/Notation3
4 http://ksl.stanford.edu/software/JTP/

multiple parties. Also, the authors focus on finding suitable web service compo-
sitions, in contrast to our approach which aims at finding appropriate security
mechanisms. The aspect of policy negotiation is discussed in [8] where the au-
thors propose a preferences model based on utility functions and description
logics for agreeing on the most preferred setting. Although the authors do not
consider the refinement process and focus on a slightly different setting than
we do (e.g., different capabilties of endpoints are not discussed) the approach
of negotiations based on individual preferences is promising and could be added
as an extension to our solution. In previous work [21] we already showed how
global preferences for certain policies can be used to optimize the overall system
behavior in terms of security or performance.

3 Scenario

In order to illustrate the challenges we addressed we introduce the following ex-
ample: imagine that Alice joins an intelligent office environment with her mobile
phone A. She wants to use some of the resources provided by the environment,
for example she needs to print a document using the printer in the hall. As Alice
does not want anybody to intercept the document data while it is being sent
to the spooler, she has set up a high-level policy polA stating that all commu-
nication to printing devices must be confidential. While most traditional policy
languages would require Alice to specify which concrete actions should be taken
(such as executing a certain encryption protocol), this is not possible in dynamic
scenarios where at design time it is not known which actions are supported by
the communication partners. Bob, the developer of the intelligent office, whishes
to ensure that misuse of the printer B can be traced at a later time, so he wants
clients to provide an identification that can be logged. Further, A and B have
capabilities which are described in an ontology: capability cA states that A runs
an OSGi platform (and is thus able to dynamically load remote software mod-
ules). Capability cB describes that the printer B is able to run a lightweight
encryption protocol.

In order to realize this scenario, it is necessary to integrate semantic descrip-
tions into policies and to use them for refining the high-level policies of Alice
and Bob. The refinement has to state concrete security mechanisms which can
be applied to both endpoints and fulfill the constraints set by capabilities cA, cB
and policies polA, polB . Additionally, in some cases it might be required to verify
the correctness of the semantic annotations of A and B. As the policy refine-
ment and therewith the resulting security mechanisms depend on the constraints
set by cA and cB , Alice must be able to verify that this description is truthful
as otherwise semantic descriptions that have been tampered with will lead to
an incorrect refinement of the high-level policies and thus to a possibly faulty
policy decision. Here, the result of the policy refinement could be an obligation
instructing the phone to load a module that implements a lightweight encryp-
tion protocol and can be executed by the printer, along with an identification
protocol based on the IMEI of the phone. Although these mechanisms fulfil the

requirements for confidentiality and identification, they are not the most secure
solution but are rather a trade-off between the device capabilities and the se-
curity requirements. Finding this trade-off and verifying the correctness of the
limiting device capabilities is the subject of our approach.

4 Building Blocks

In this section, we describe how information will be processed and which building
blocks are involved.

4.1 Required Components

At first we assume devices come with a Trust Anchor (TA). The TA is a module
that has the ability to attest the integrity and the state of the software running
on the device by means of cryptographic signatures. It therefore measures the
current platform configuration as a set of hash values of the currently running
software modules and creates a blinded signature of it, called Commitment. As
the integrity of the TA itself cannot be proven it has to be constructed in a
way that other parties can trust its integrity, for example as a (Mobile) Trusted
Platform Module (MTM, TPM), or as part of a virtualization container (i. e.
integrated into a hypervisor kernel).
Second, devices must further be able to communicate via the built-in TA with a
Security Service. The Security Service acts as a client to the TA and will create
an attestation of the properties based on the previously generated commitment
that can be considered as a confirmation which guarantees that the device runs
a platform that has certain properties (called capabilities in this paper) but
does not reveal the exact platform configuration (c.f. mapping dev in the next
subsection). Further, we assume the existence of a common knowledge base (KB)
providing semantic information about devices and their capabilities as well as
about security mechanisms and their properties (c.f. mapping sec in the next
subsection). Although information about security mechanisms is pre-defined and
does not necessarily change while the system runs, information about devices is
gained from semantic annotations of the services provided by devices (e. g. by
means of SAWSDL [1]) and may thus be updated or changed during run time.
The policy infrastructure is based on the usual components Policy Decision
Points (PDP) and Policy Enforcement Points (PEP), as described by PCIM and
COPS. A PDP is a service that receives policy decision requests sent by PEPs,
makes a decision about the request based on the policies stored within and sends
back a policy decision. PEPs are attached to the services provided by devices and
are mainly responsible for intercepting incoming and outgoing requests, sending
policy decision requests to the PDP and enforcing the received policy decision
using different plug-ins (Enforcement Modules). These main building blocks are
connected to each other as depicted in Figure 1.

Knowledge Base

specifies policies

Developer

uses knowledge

mergescontrols

Device

SecurityService

Device annotation

attests

Enforcement Modules

PEP

controls

PDP

TA

Figure 1. High-level building blocks

4.2 Information sources and mappings

After having introduced the main building blocks, we now describe how infor-
mation is processed by them.

Knowledge Base The knowledge base (KB) takes the form of several ontologies,
among them the Device Ontology (cf. Section 5.2) and the Security Ontology
(cf. Section 5.2). Besides other information, KB provides the mapping sec which
assigns concrete security mechanisms s ∈ S to the security properties p ∈ P they
achieve and the platform capabilities cap ∈ Cap which are required to execute
them.

{P : pi, Cap : capj} ←7 sec (S : s)

Device Annotations Other parts of the ontology, such as device-specific infor-
mation, are provided at run time by the devices themselves in form of semantic
annotations. These automatically generated facts must be verifiable at a later
time as policy decisions depend on them. The mapping dev from a platform
configuration c to the corresponding capabilities cap is denoted as

{Cap : capi} ←7 dev (C : c)

Security Policies The security policies in our approach regulate access requests
to services depending on the requesting subject, the requested service (resource)
and further conditions such as current context values, where subjects, resources
and conditions can be specified based on facts from the ontology. The result of a
policy decision will be a binary decision (deny/permit) and a set of requirements,
stating security properties pi which have to be fulfilled before the decision is
enforced. A policy decision process pol can thus be denoted as the following
operation pol:

([deny, permit] , {P : pi})←7 pol (subject, resource, cond)

Refinement Process Based on the mappings sec and pol we define a refinement
process ref of finding a security mechanism which matches device capabilities
and security requirements stated by policies. The refinement process can also be
formulated as a catenation of sec and pol, as shown in Figure 2:

({S : sk})←7 ref ({Cap : capi} , (subject, resource, cond))

ref = sec−1 ({Cap : capi} , pol(subject, resource, cond))

Device Capabilities

Security PropertiesSecurity Mechanisms

Platform configuration

dev

sec

(subject,resource,cond)

pol
sec

ref

ref
ref

ver

Figure 2. Refinement and verification process

Trusted Verification In addition to the policy refinement process, a verification
process ver is needed, which allows a verifier to ensure that the semantic in-
formation used in the policy process is truthful, i. e. that the mapping dev is
correct. That is, ver shall verify that a device fulfills the capabilities stated by
its semantic annotation (i.e. verify an instance of dev). The verification pro-
cess can be formulated as follows, where Ĉ denotes the set of attested platform
configurations:

[true, false]←7 ver
(
Ĉ : c, {Cap : capi | 0 ≤ i ≤ m}

)
5 Semantic access-control policies

In this chapter, we introduce the policy model that our approach relies on, pro-
vide a brief overview of the two most important ontologies of our knowledge base
and describe the knowledge base is integrated into the policy decision process.

5.1 Policy Model and Decision Process

The authorisation policy model that we use is depicted by Figure 3. It is a
simplification of the XACML policy model, so we were able to represent our
policies in XACML syntax and use an existing policy decision engine5 (with sig-
nificant modifications, though) during the prototype implementation: an Autho-
risationPolicy consists of a MetaPolicy (according to XACML’s rule combining
algorithm for resolving comflicts between positive and negative decisions) and
a number of AuthorisationRules. Each AuthorisationRule consists of a Subject
that requests access of a certain type (AccessType) to a Resource (similar to the
XACML target element). Although the model is not limited to any resource or
access type, for the sake of clarity in this paper we limit the usage of the re-
source field to identify services and the access type field to four different phases
of a service invocation (incoming / outgoing and request / response). Further,
an authorization rule contains a condition that must be true for the rule to be
applicable and an obligation that must be fulfilled before the Effect of the rule
is enforced. The condition refers to context information which can be used to
describe the current situation and the obligation defines actions which can be
5 SunXACML, http://sunxacml.sourceforge.net/

Effect

AuthorisationPolicy

ResourceAuthConditionAccessType Subject

AuthorisationRule MetaPolicy

{ordered}

Obligation

0..1

1 1

1

1..n 1..n

1

1..n

1..n

1

1..n

1

1..n

11

1..n

Figure 3. Model of authorisation policies

carried out by different enforcement modules. Effects supported by the policy
model are either permit or deny, so that it is possible to specify positive as well
as negative authorizations. By combining outgoing requests with negative au-
thorizations, the policy model further covers refrain policies, i. e. policies that
prevent a subject from sending out potentially harmful requests, for example, in
order to protect it from revealing critical information to outsiders.

In order to integrate semantic information into policies, we represent Subjects
and Resources in Description Logic (DL) using complex class expressions formu-
lated in OWL Manchester syntax [4]. A complex class expression is a combina-
tion of OWL classes, properties, set operators and cardinality restrictions. So,
referring to the example above, Alice’s policy could describe the printer service
by the complex class expression (Subject AND Printer) THAT supportsSe-
curityMechanism SOME SecurityMechanism THAT supportsProtectionGoal
VALUE confidentiality.

When a device requests to access another device, the policy decision process
is as depicted in Figure 4. The request from device A to B is intercepted by A’s

: PEP A

: PDP A : PDP B : Knowledge Base

: Service A : Service B

: Database

1: request (req)

2: decisionRequest

3: requirements (requirem.) + capabilities (cap.) + PBA

4: req. + cap. + requirem. + PBA

5: decisionRequest 8: decision + obligation

10: invoke

11: response

6: query, refine

7: store PBA for later verification

: EnforcementModule: PEP B

9: enforce obligation

0: register

Figure 4. Collaboration of components for policy decision process

PEP, forwarded to its PDP where it is annotated with A’s capabilities capA, an
attestation ATAof them and high-level requirements (e.g., confidentiality, in the
example) and then sent to B where it is again intercepted and forwarded to B’s
PDP where the following refinement process takes place:

1. Given the subject (A), the access type (call), resource (B) and further con-
text values, the PDP retrieves B’s high-level requirements in form of security
properties p from the policy.

2. PDPB extracts A’s capabilities cap from the annotated request.

3. PDPB retrieves ATA from the annotated request and verifies it as described
in section 6.

4. Assuming the policy evaluates to permit in step (1), PDPB finds an obli-
gation obl defining a security mechanism which refines req and cap from A
and B s.t.

O = SecurityProtocol u
∃.hasObjectiveStrengthRel (ui (pi) ,> ε)

5. PDPB returns the policy decision (permit), the obligation obl and its own
attestation of properties ATB to the PEP which then sends ATB , capB and
pB to A for later verification and enforces the obligation.

After this process, A and B are in possession of the following values: ATA, ATB ,
capA, capB , pA, pB and obl. The obligation obl will be sent to and enforced
by the PEP that initially triggered the policy decision. The obligation obl is a
result of the constraints set by the requirements and capabilities provided by the
devices. It would thus be possible for a device to announce wrong capabilities
in order to manipulate the refinement process in a way that weaker, possibly
vulnerable, security mechanisms are chosen as obl, for example. Therefore, it
must be possible at a later time to verify the correctness of device requirements
and capabilities. By using attestation certificates ATA and ATB and mapping dev
provided by KB, a verifier can validate that, at the time of the policy decision,
device A and B have run a platform configuration that actually provides the
announced requirements and capabilities. The next section describes how these
attestations can be generated.

5.2 Knowledge Model

The policy refinement process makes use of semantic information which is rep-
resented in ontologies. Ontologies model knowledge in terms of classes which
are abstract descriptions of entities (e. g., SecurityProtocol), relations beween
them (e. g.,X supportsProtectionGoal Y) and individuals which instantiate these
classes (e. g., OpenSSLv1). The ontologies in our approach include the mappings
sec, defined by a Security Ontology and dev, defined by device annotations and
a Device Ontology. Besides these mappings, the Security- and Device Ontolo-
gies provide further information which can be used when specifying subjects,
resources or conditions. For example, in our prototype we integrated the Pellet
2.1 reasoner in order to check whether subjects and resources contained in an
access request are instance of the DL class expression stated in the policy.

Device Ontology In order to model the mapping dev we make use of the De-
vice Ontology from the Hydra project6 which is originally based on the FIPA
device ontology7 and the W3C DeliveryContext ontology8 but has been largely
6 http://hydramiddleware.eu
7 http://www.fipa.org/specs/fipa00091/PC00091A.html
8 http://www.w3.org/TR/dcontology/

extended to cover the needs of pervasive systems, such as modeling energy ef-
ficiency criteria, supported software libraries, etc. Further ontologies have been
created and attached to the Device Ontology, including models of QoS parame-
ters, services descriptions and possible malfunctions.

The relations and concepts and some individuals of the Device Ontology are
pre-defined and fixed. Yet, as devices which are not known at design time need to
be integrated into the knowledge base at run time, they provide descriptions of
themselves in form of semantic annotations. The semantic annotation of a device
comprises at least one individual of the main HydraDevice concept, possibly
along with further properties. These semantic annotations are provided by a
special service on the device and are retrieved and integrated into the knowledge
base as the device joins the network. Referring to the example from section 3,
the smart phone could be described by the following annotation (In Notation3.
Namespaces have been omitted):

: AlicePhone a : Smartphone ;
: dev i c e Id "1234";
: hasHardware [a : DeviceHardware ;

: availableMemory 2 0 4 8 ;] ;
: hasSoftware [a : so f twarePlat form ;

: hasVirtualMachine SUN Java CDC;
: hasModular i sat ion FelixOSGi ;] ;

: i n f o [a : I n f oDe s c r i p t i on ;
: fr iendlyName "AlicePhone " ;
: modelDescr "G1DevPhone1 . 4 " ;] .

Security Ontology Information about security mechanisms is represented in
the Security Ontology. Its main purpose is to provide the mapping sec from
high-level security properties (e. g. protection goals) to specific security mecha-
nisms in the form of implementation modules that can be applied at run time.
It further provides additional information about these modules such as CPU
and memory requirements and information about assurances of their security
level, as provided by third parties such as FIPS [10] or Common Criteria. The
concept SecurityProtocol denotes specific software modules that can be installed
and started at run time. An estimation of their resource consumption is given
by the two relations requiresComputingPower and requiresMemory and their se-
curity properties are modeled by the SecurityObjective concept which describes
protection goals such as authentication, confidentiality or integrity. By the Ob-
jectiveStrengthRelation each module is assigned a protection goal and a strength
to which it supports this goal. That way, it can be expressed that a module is
suited to achieve “high” confidentiality while it supports only “low” authenticity,
for example.

6 Attestation of Properties

During the policy decision process a device claims to comply with certain proper-
ties. Each property claimed by the device refers to information in the ontologies
which is the basis for policy decisions. It is therefore a requirement to authen-
ticate devices with respect to their claimed properties in order to avoid that

devices induce wrong policy decisions by claiming false properties. This section
introduces different methods to ensure that devices align with the information
stated about them in the ontologies, i.e. that the device annotation mapping dev
is correct. As introduced, we assume that devices contain a Trusted Computing
Base (TCB) that consists of a Trust Anchor (TA) and the platform on which
the TA is integrated. To create an authentic statement on the trustworthiness of
the particular device and the provided properties the TCB can either monitor
the behavior of the system that is running in an untrusted area or provide a
proof of the state of the whole device. The former requires attestation limited
to a trusted part and assumes certain trust boundaries, the latter requires proof
on every piece of software running on the device.
The local monitoring approach assumes that a device consists of two different
trusted domains. The TCB as a trusted domain must be enforced by means of,
for example,a secure firmware or hardware rooted trust reporting as defined by
the Trusted Computing Group (TCG) as explained below. This domain con-
sists of the necessary infrastructure in order to monitor loading and execution
of software component of the untrusted domain. Such monitoring may be imple-
mented by several means, such as load time certificates, proof carrying code or
inline monitoring.
An example for load time certificate validation is Reference Integrity Metrics
(RIM) certificates as defined for Mobile Trust Modules [9]. In this concept, each
software component is delivered with an appropriate certificate by a trusted
party that attests the integrity of the software component. A software compo-
nent may therefore only be loaded into the memory of the untrusted domain,
if the provided certificate refers to the code to be executed and can be verified.
An extension to this concept is the provision of properties of those software
components instead of a general guarantee of trustworthiness, such that a PDP
may check its policies accordingly. An alternative concept that does not require
data other than the software itself is provided by inline monitoring of software
properties. This however requires the PDP to transform its policies into a set of
enforceable properties against the actual code that introduce checking of certain
constraints during runtime, e.g. by means of aspect oriented programming.
The concept of the TCG, that is also required for the trusted domain of the
monitoring approach, can be extended to the software component to be loaded
itself. Based on a hardware root of trust, that is usually implemented within
the pre-loader of the BIOS, every program code loaded into memory is hashed
and stored to a Trusted Platform Module (TPM) before execution. Accordingly,
the TPM holds the complete executional sequence of the platform from boot
to present. This information can be reported to other parties, providing au-
thentic evidence of the platform configuration and hence trustworthiness. These
reports have been investigated widely in the scientific community lately [13].
Also the challenges of scalability [14] and reduction of processing overhead [20]
have been targeted. However, especially the challenge of protecting the privacy in
terms of user identification and device fingerprinting remain open, though WS-

Attestation [20] and Property-Based Attestation (PBA) [12] may be utilized in
that perspective and will be considered as part of our future work.

7 Conclusion

In this paper, we have presented an approach for resolving abstract security poli-
cies of multiple domains with the help of semantic knowledge. This policy refine-
ment process finds a set of applicable security mechanisms which matches the
abstract security requirements stated by a developer and at the same time com-
plies with the capabilities and restrictions stated by devices. We have presented
the structure of the ontologies used to describe devices and security mechanisms,
and explained the policy resolution process. In order to verify the correctness of
the device descriptions used in the policy resolution process, we have proposed
using different assurance techniques based on TPM attestations. While some
approaches have been proposed previously on the integration of semantic knowl-
edge and policies, we describe an architecture that integrates access-control and
communication policies within a coherent protocol. In addition we consider vali-
dating the correctness of semantic knowledge used for policy decisions by means
of trusted computing functions. A software architecture realizing the solution
presented in this paper has been designed and a prototype including the se-
mantic policy model has been implemented as part of the Hydra middleware. As
part of our future work we intend to extend the protocol proposed herein towards
a negotiation of quality-of-service parameters based on individual preferences,
building the basis for a “self-protecting” system. Further, we will consider tech-
niques for generating proofs of the correctness of semantic information based on
Property-Based Attestation.

Acknowledgements The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

1. Semantic Annotations for WSDL and XML Schema. W3C Recommendation, Au-
gust 2007.

2. Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The pon-
der policy specification language. In Workshop on Policies for Distributed Systems
and Networks (Policy ’01), pages 18–39, 2001.

3. Rodolfo Ferrini and Elisa Bertino. Supporting RBAC with XACML+OWL. In
14th ACM symposium on Access control models and technologies (SACMAT), pages
145–154, 2009.

4. Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert
Stevens, and Hai Wang. The manchester owl syntax. In CEUR Workshop Proceed-
ings, volume 216 of OWLED, 2006.

5. Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner. Using seman-
tic web technologies for policy management on the web. In National Conference
on Artificial Intelligence (AAAI), July 2006.

6. Torsten Klie, Benjamin Ernst, and Lars Wolf. Automatic policy refinement using
owl-s and semantic infrastructure information. In Proc. 2nd IEEE Int. Workshop
on Modelling Autonomic Communications Environments (MACE), San Jose, US,
October 2007.

7. Lalana Kagal. The rein policy framework for the semantic web, 2006.
http://dig.csail.mit.edu/2006/06/rein/.

8. Steffen Lamparter and Sudhir Agarwal. Specification of policies for automatic nego-
tiations of web services. In Lalana Kagal, Tim Finin, and James Hendler, editors,
Semantic Web and Policy Workshop, pages 99–109, Galway, Ireland, November
2005.

9. TCG MPWG. The TCG mobile trusted module specification. TCG specification
version 0.9 revision, 1.

10. National Institute of Standards and Technology. Security Requirements for Cryp-
tographic Modules. Federal Information Processing Standards Publication 140-2,
2002.

11. Anand Patwardhan, Vladimir Korolev, Lalana Kagal, and Anupam Joshi. Enforc-
ing Policies in Pervasive Environments. In International Conference on Mobile and
Ubiquitous Systems: Networking and Services, August 2004.

12. A.R. Sadeghi and C. Stüble. Property-based attestation for computing platforms:
caring about properties, not mechanisms. In Workshop on New security paradigms,
pages 67–77, 2004.

13. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation
of a TCG-based Integrity Measurement Architecture. Proc. of the 13th USENIX
Security Symposium, pages 223–238, 2004.

14. Frederic Stumpf, Andreas Fuchs, Stefan Katzenbeisser, and Claudia Eckert. Im-
proving the scalability of platform attestation. In Workshop on Scalable Trusted
Computing (ACM STC ’08), pages 1–10, Fairfax, USA, October 31 2008. ACM
Press.

15. Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila. Proteus:
A semantic context-aware adaptive policy model. In IEEE 2007 International
Workshop on Policies for Distributed Systems and Networks (POLICY), Bologna,
Italy, June 2007. IEEE Computer Society Press.

16. Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan
Suri, and Andrzej Uszok. Semantic Web Languages for Policy Representation and
Reasoning: A Comparison of KAoS, Rei, and Ponder. In The Semantic Web (ISWC
’03), volume 2870/2003, pages 419–437, 2003.

17. Kevin Twidle, Naranker Dulay, Emil Lupu, and Morris Sloman. Ponder2: A Pol-
icy System for Autonomous Pervasive Environments. In The Fifth International
Conference on Autonomic and Autonomous Systems (ICAS ’09), April 2009.

18. Andrzej Uszok and Jeff Bradshaw. Kaos policies for web services. W3C Workshop
on Constraints and Capabilities for Web Services, October 2004.

19. Kunal Verma, Rama Akkiraju, and Richard Goodwin. Semantic matching of web
service policies. Proceedings of the Second Workshop on SDWP, 2005.

20. S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, and H. Maruyama. WS-
attestation: efficient and fine-grained remote attestation on Web services. Interna-
tional Conference on Web Services (ICWS ’05), page 750, 2005.

21. Weishan Zhang, Julian Schütte, Mads Ingstrup, and Klaus M. Hansen. A Genetic
Algorithms-based approach for Optimized Self-protection in a Pervasive Service
Middleware. In International Joint Conference on Service Oriented Computing
(ICSoC ’09), November 2009.

