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Abstract—Dynamic taint analysis traces data flows in appli-
cations at runtime and allows detection and consequently
prevention of flow-based vulnerabilities, such as data leaks
or injection attacks. While dynamic taint analysis spanning
all components of the stack is potentially more precise, it
requires adaptations of components across the OS stack and
thus does not allow to analyze applications in their real runtime
environment. In this paper, we introduce a dynamic taint
analysis framework for Android applications which injects a
taint analysis directly into an application’s bytecode and can
thus operate on any stock Android platform. Our approach
is more precise than previous ones, copes with flow-aware
source and sink definitions, and propagates data flows across
process boundaries, including propagation over file I/O and
inter process communication. We explain how our framework
performs with popular apps from the Google Play Store and
show that it achieves a precision which is comparable to the
most precise platform-level tainting framework.

1. Introduction

Data flow vulnerabilities are a class of security flaws in
programs which are based on unwanted flows of data across
variables and registers. Typical data flow vulnerabilities are
all kinds of missing input sanitations like SQL and code
injections, but also data leaks threatening the privacy of
the user. Dynamic taint analysis (DTA) is a well-known
technique to track flows of data from sources to sinks
during execution of a program in order to either detect or
even prevent such data flow vulnerabilities at runtime. For
platforms like Android, which are based on an application
framework where execution of programs is an interplay of
the actual application code and the underlying application
framework and operating system, dynamic taint analysis can
be implemented at different layers. Tracing data flows only
at the operating system level is not a reasonable approach, as
it would exclude semantics of the bytecode interpreter and
thus make data flow tracing across memory regions a much
more complex task. But when including both the operating
system and application framework in the analysis, semantics
of the application lifecycle and the framework API can be
used in the taint analysis, which makes it much simpler to
keep track of data flows at runtime. However, in practice
there are major drawbacks of such platform level DTA. The
platform itself must be modified at various places to support
taint analysis. This affects the file system, virtual machines
(i.e., ART or dalvik), as well as the Binder module for inter
process communication (ICC). These dependencies on the

platform make dynamic taint analysis less portable and bind
it to a specific platform, whereas the applications are more
or less independent of the specific platform version and
may run on completely different platform configurations.
As a consequence, average users cannot use dynamic taint
analysis and profit from a respective data leak prevention
on their phone, and security testers are limited to a specific
platform version which would soon be outdated.

In contrast, taint analysis at application level only re-
quires modification of the application and thus overcomes
the requirement of modifying the Android system and its
different platform components. The challenges here are
however to reflect the effects of the Android framework
(i.e., its API and its lifecycle management) and to cap-
ture flow-aware source and sink definitions to achieve the
precision of platform-level taint analysis. Several solutions
(e.g., [2], [14]) performing application-level dynamic taint
analysis have been presented to the research community.
These frameworks could not achieve a precision similar to
platform-level tainting as they lack a precise handling of
inter-process data flows, especially the use of files and ICC.

Our contribution is a framework for injecting dynamic
taint analysis into Android applications which operates ex-
clusively at application layer and achieves a precision com-
parable to the most popular platform-level dynamic taint
solution TaintDroid [7]. This allows us to apply highly pre-
cise taint analysis to any Android application, independent
of the Android platform itself, and to observe and prevent
unwanted data flows their actual runtime environment, i.e.
on any Android version. In summary, our contributions are
the following:

1) A flow-aware multi-statement definition for data
sources and sinks

2) Precise handling of file accesses at application level
3) Tracing data flows across ICC calls
4) Tracing data flows across Android system services

such as SharedPreferences

After a discussion of related work in section 2 we
point out the challenges of DTA, specifically with regard to
application-level DTA and the Android platform in section 3.
In section 4 we present our approach of injecting taint
analysis at bytecode level and in section 5 we explain the
details of our prototype implementation. Finally, in section 6
we evaluate our approach with respect to precision and
performance.



2. Related Work

TaintDroid [7] is one of the most prominent dynamic
taint analysis frameworks for Android and achieves high
precision with an average runtime overhead of 7%. It mostly
operates at the level of the dalvik virtual machine (VM) and
thus covers taint propagation in both the Android SDK and
the app likewise. Further, it tracks taint of files and ICC
messages. We chose TaintDroid as an evaluation benchmark
for our solution for its high precision, knowing that it
is conceptually more complete compared to our approach.
However, we aim to overcome the practical drawbacks of
TaintDroid: as it operates at platform level, it requires a
specifically adapted version of the Android system. For the
average user, this makes TaintDroid not a viable option, as it
voids guarantees of the phone and requires a non-supported
fork of the OS. For security analysts, the dependency on
a specific Android version supported by TaintDroid is a
hindrance because it is not possible to analyze applications
in their real environment, i.e., on a recent non-rooted stock
Android. TaintDroid supports Android versions from 2.1 to
4.31 which amounts only to 18.6 % of devices in the field
and excludes all apps requiring newer OS versions from
being analyzed. This is not merely an issue of maintaining
the system, but is rather conceptually founded in TaintDroid
being integrated into the VM which changed from dalvik to
ART and would thus require a rewrite of major parts.
XManDroid [5] extends the Android framework to monitor
apps to detect escalation attacks based on inter-component
communication (ICC).
Similar to our approach, Capper [14] implements appli-
cation-level DTA to instrument the app. Capper inserts
shadow registers holding the taint state of registers directly
into the bytecode and thereby unnecessarily doubles the
amount of registers needed by the application. In contrast,
we use a global taint table to directly map objects to their
taint state and thus achieve a memory overhead linearly to
the number of created objects, instead of to the number of
method calls. It uses static analysis to reduce the number
of statements to instrument, which improves its runtime but
reduces its precision by increasing its false negative rate to
the limits of the static flow analysis. Further, it does not
trace taints over ICC or files.
AppCaulk [12] combines static analysis to inject targeted
DTA into Android applications. It uses heuristics to deal
with data flows across process boundaries, which potentially
leads to drastic overtainting for the actual traced data flows.
It considers only files and sockets as communication chan-
nels between processes, while ICC is out of its scope.
Jadal [10] combines static and dynamic analysis for Java
applications and has been extended to support Android [2].
It analyses control flows but does not dynamically trace taint
states. Quire [6] and Scippa [3] construct an ICC call chains
to detect insecure collaborations between applications. In
contrast to our approach they require modifications to the
Binder ICC and thus depend on the underlying platform.

1. At the time of this writing, Android 7 is the most current version

3. Specifics of Application-level DTA

We first introduce the basics of dynamic taint analysis
and highlight the challenges when applying it at application-
level only. For further reference on DTA, we refer to [13]
and for foundations on program analysis to [11].

The goal of dynamic taint analysis is to trace how data
read from a source is propagated during program execution
until it is written to a sink. A source is usually a definition
statement, i.e., the first assignment of critical data to a
memory location in the context of the program. When data
is read from a source, it is assigned a taint flag, which is
a label indicating the type of data. A sink is respectively a
use statement where tainted data is written into an unsafe
method. The taint propagation logic defines how taint flags
propagate across memory locations depending on the current
statement and includes conditions that will untaint memory
locations, i.e., remove a taint flag.

This general notion of dynamic taint analysis is in-
dependent from the target platform and universal to its
implementation. When applying it to a real program, one
has to take several design decisions which influence the
performance and precision of the analysis:

Taint level. When tracing data flows at the platform
level, memory locations refer to actual locations in virtual
process memory and statements refer to CPU instructions. In
contrast to that, we aim at DTA at application level, which
is limited to the Android bytecode. In our case, memory
locations are registers in the dalvik or ART virtual machine
and statements refer to dex bytecode instructions.

Management of taint labels. While for platform level
tainting, it is possible to run a separate global ”taint en-
gine”, this is not possible in application-level DTA, because
we need to restrict ourselves to the application’s bytecode
and its process. Rather, we have to modify the application
itself in order to make it keep track of its taint labels at
runtime and will inevitably loose control over taint flags
at the process boundary, i.e. whenever code outside of
the application’s bytecode is called. Especially ICC calls,
file I/O, JNI calls, and Android services may break taint
propagation and must be covered by either transporting taint
flags across these channels or reflecting their effects in the
taint propagation logic.

Flow-sensitivity of sources and sinks. Platform level
tainting typically refers to sources and sinks as single in-
structions (e.g., a send syscall on a socket file descriptor).
In high-level languages, practical source and sink definitions
do not refer to single statements, but rather to program
slices. Consider the following code snippet in Listing 1.

Listing 1. Example of a multi-statement source
1 File f = new File("some_file.txt");
InputStream fis = new FileInputStream(f);

3 BufferedReader br = new BufferedReader(fis);
while ((String line = br.readLine()) != null) {

5 // reading from file ...
}



When limiting source and sink definitions to individual
statements, it remains unclear how to handle this snippet.
If line 4 was defined as a source, all read operations
from BufferedReader would be marked as a critical
data source, which would lead to massive overtainting of
BufferedReader, while still neglecting all other ways to
read from a file. Treating the File constructor in line 1 as a
source is also imprecise because on the one hand, we would
miss the various other ways to construct File objects
without explicitly passing the file name to the constructor.
On the other hand, the call of the File constructor does
not necessarily impose a data source, so we would increase
both false negatives and false positives. Hence, application-
level taint analysis must be able to cope with flow-sensitive
source and sink definitions.

4. A Dynamic Taint Injection Approach

We inject DTA into Android applications by statically
instrumenting their dex bytecode. As long as modification
is legal in terms of passing the verification at installation
and runtime of application, this is a valid operation. The
cryptographic signature of the application will break, but
resigning it with a different key will create a new valid
Android application which runs on stock platform (except
it cannot be installed as an update to the original app). The
instrumentation preserves the original semantics and adds
the ability to trace taint flags. As dex bytecode is register-
based, there is no need to taint memory addresses, which
allows for a very precise analysis.

4.1. Instrumentation flow

The basic flow of the instrumentation is shown in Fig-
ure 1. We use the Soot framework [8] for bytecode instru-
mentation, which disassembles bytecode into smali [4] and
translates it into the Jimple intermediate representation (IR).
Jimple is a three-address typed intermediate representation
(IR) which is well suited for instrumentation because it
allows to leave reorganizations of registers to the Soot com-
piler and is thus less error-prone than a direct modification of
smali disassembly. We then inject a dynamic taint analysis
into the Jimple IR, including source and sink tracing, a
global taint table, read/write instructions for updating the
table upon every operation on data registers, and the actual
taint propagation logic. Finally, the instrumented app is
packed and signed again to provide a new, valid apk file with
the same semantics as before but now performing dynamic
taint analysis. In the following subsections, we explain the
details of the injected DTA.

4.2. Taint storage

A clear advantage of application-level taint analysis in
bytecode over DTA at platform-level is that it is possible to
taint objects held in registers, instead of blocks of memory
locations, which allows a more precise analysis. We store
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Figure 1. Instrumentation workflow

taint labels in a global taint table which maps from an object
to its taint for every object in the application. Depending on
what part of the object carries taint information, we consider
the three possibilities

1) The whole object o contains sensitive data
2) A field o.x contains an object carrying sensitive

data
3) A static field C.X of a class C contains an object

carrying sensitive data

For each of these cases a different storage of taint is
necessary. The first case requires a mapping from object o
to its taint. For the second case, an object maps to the values
of its current attributes. The last case requires a mapping
from class C to its static attributes.

Listing 2 shows the motivation for this storage by an
example for all the three possibilities of storing taint. Com-
ments indicate the entries in the taint table after the line
is executed. When the IMEI is read in line 1, the string
containing it is tainted accordingly what complies to the first
way of tainting data. In line 2, o.a also contains the IMEI
but as we can observe the field, we do not taint the whole
object o but only register that s is assigned to o.a. When
the value of o.a is updated in line 4 of the code, the taint
of o does not have to be recalculated – i.e., the taint label
IMEI would not be correct anymore – but only the attribute
in the list is replaced. Also, when the static attribute C.c is
set in line 5, this only affects the list of static fields of class
C but not the taint of its outcomes e.g. o.

Listing 2. Example for the Taint Storage
String s = TelephonyManager.getDeviceId(); // s -> {"IMEI"}

2 o.a = s; // o -> {("a" -> s)}, s -> {"TAG_IMEI"}
o.b = y; // o -> {("a" -> s), ("b" -> y)}, ...

4 o.a = z; // o -> {("a" -> z), ("b" -> y)}, ...
C.c = x; // C -> {("c" -> x)}, ...

The approach benefits from the possibility to build the
taint of an object at run time from its direct taint and the taint
of all of its static and non-static attributes by calculating the
disjunction of all the taint values. Whenever a new value of
an attribute is set, the list of attributes is updated.

This taint storage allows us to have the most recent taint
of an object with minimal additional computation to update
the taint. The taint of objects that are an instance of a class



implemented in the app is precise as the taint of the object is
always built from the current attributes. We use the objects
as key for the taint value and compare them on their memory
addresses. This allows us to differ between equal data that
are derived in a different way.

For all library classes, we can only use the first possibil-
ity as we cannot observe the values of their fields. For these
classes, we need to analyze how a method modifies the taint
of an object. This is defined in the taint propagation logic
of our dynamic taint framework.

4.3. Taint propagation

The taint analysis assigns taint labels to objects o. Taint
labels can be regarded as bits in a bit vector L of length k
where Li = 1 indicates that the label at position i is set.
Each instruction of the code retrieves a set IN , reflecting
the global taint state, and produces a new global taint state,
determined by OUT . The taint propagation logic defines for
each instruction how it affects the global taint state. It does
so by specifying a GEN set of newly introduced taint flags
and a KILL set of taint flags to remove. The effect of a
single instruction l can then be written as the set of input
taint flags, minus all removed (killed) flags, joined with all
newly introduced taint flags:

OUT (l) = GEN(l) ∪ [IN(l) \KILL(l)]

The definition of GEN and KILL is the core of the
taint policy and depends on the operation of the instruction.
Here lies one of the main differences of application-level
tainting compared to platform-level-level tainting: while for
the latter the definition of GEN and KILL only depends
on the opcode of an instruction, application-level tainting
must also take into account function names and thereby
potentially specify a taint propagation policy for the full set
of API functions, i.e., all functions which are not declared
inside the analyzed application.

With more than 100.000 API methods [1], manually
defining their tainting behaviour seems like an infeasible
task. In practice, however, the tainting behavior of API
methods can be inferred from their signature in most cases:
we analyzed a large part of the Android API and summarize
the tainting behavior of API calls by the following default
rules. Assuming a statement consists of a call to a method
m of a base object b (non-static methods) or of a base class
C (static methods) and passes arguments v1, .., vn to the
method, where vi is an object, we can define the default
tainting behavior as follows:

If the statement is a non-static method invocation, the
taint of any argument is propagated to the base object:

GENinvoke_virtual = {taint(b) =
⋃
I

taint(vi)}

As a consequence, the call of any setter of a Java object
with a tainted argument will taint the object itself. As our
taint analysis ends at the boundary of the application and
does not inspect the API itself, tainting the base object is

the only reasonable choice and in fact the correct one for
non-static invocations. In theory, the heuristic is imprecise
in two cases: propagating to the base object introduces
overtainting when the method implementation does not have
any side effects. Not propagating the union of all taint
flags to all arguments leads to undertainting, if the method
implementation copies values from one argument to another.
The following example method demonstrates the worst case
in which the heuristic fails:

Listing 3. Method implementation for which the heuristic fails
1 class Example {

void copy(byte[] arg0, byte[] arg1) {
3 for (int i=0;i<arg0.length;i++) {

if (i<arg1.length) {
5 arg1[i] = arg0[i];
}}}}

As the copy method does not have side effects, tainting
the Example object instance is incorrect. Further, as values
are copied from arg0 to arg1, it is incorrect to not
copy the taint labels, too. In practice, however, we did
not come across an API method matching this pattern, but
rather determined that the taint propagation heuristics from
above apply. Implementations like in Listing 3 are typi-
cally found in static methods (e.g. System.arraycopy,
Arrays.copyOfRange, etc.).

Hence, for static method invocations, we propagate taint
among all arguments of a method call:

GENinvoke_static = {taint(vj) =
⋃
I

taint(vi) ∀vj ∈ I}

This reflects the characteristic of static methods as being
stateless utility functions, either returning constant values
from getters or operating on arguments.

Finally, just like for any other method invocation, if
the method call is contained in an assign statement, the
taint status of the objects on the right hand side (rhs) is
propagated to the object o on the left hand side.

GENassign = {taint(o) =
⋃

r∈rhs

taint(r)}

We use the same heuristics to propagate taint over JNI
calls of the app.

4.4. Handling intents

Intents transfer messages between components of ap-
plications – either within the same application or across
process boundaries. An application constructs an intent,
optionally adds payload to it and have the Android binder
kernel module send it to one or more receivers. Hence, we
need to treat the use of intents different from internal data
flows within the app. Also, it is desirable to exchange taint
information between different apps, given that they are both
instrumented.

To address the challenge of taint tracking across ICC,
it is necessary to attach the taint status of an intent to the
intent. Hence, we make use of the intent’s so called extras
attribute, which is a set of key-/value pairs sent with the



intent. We use these extras to store the taint status of the
intent and transfer it to the receiver(s). The aforementioned
taint propagation logic will taint intent objects when tainted
data is stored as a payload. Before an intent is sent, we
get the intent’s taint and add an additional extra containing
the taint. Whenever an intent is received, we check if taint
information in the extra is present, taint the intent with
the taint information from the extra and delete the extra.
Doing so, we can achieve message-level taint for intents with
minimal effort. Also, this method is stable and applicable
to every Android version since API version 1.

4.5. Persistence services

The Android API provides two ways for applications to
persist data: shared preferences and files, the latter including
sqlite databases, raw files, and sockets. Shared preferences
are a typical representative of globally available Android
services over which applications can share data using ICC.
The SharedPreferences service stores key-value pairs
persistently and either limits access to the respective applica-
tion or makes them globally accessible. While treating such
external services as data sinks is a conservative and viable
choice, treating them as data sources introduces overtainting,
as not all data read from them is necessarily critical. Hence,
we strive for a way to precisely propagate taint over these
channels, instead of regarding them as sources and sinks.

Simply tainting the service object (e.g., the
SharedPreferences instance), as done by
GENinvoke_virtual is not an option: first, this taint
would not propagate across process boundaries and
lifecycle stages of the app, i.e., it would be lost when
terminating the app. Second, it would not be possible to
distinguish taint labels of individual records.

To address these issues, we store an additional key-
value pair whenever a pair is stored. The key is derived
from the original key and the value represents the string-
representation of the original value’s taint. When data is
read from the shared preferences service, the corresponding
taint is also read and the return value is tainted with the
taint information stored in the shared preferences. Care
must be taken to avoid side effects, i.e., that artificial taint
key conflict with existing keys or are considered in any
operation on the key set, (e.g., when counting or iterating
over entries). This is achieved by respective instrumentations
of the getAll, getX, and contains methods. As a
result, this allows precise and robust taint propagation over
the external service which guarantees that taint states are
persisted along with the actual contents.

4.6. Tainting files

File I/O would be an easy way to break taint analysis if
it is not explicitly covered by the DTA. We thus store taint
flags along with files using extended attributes of the file
itself. Extended attributes (xattr) are not accessible through
the Android API but can be used by native code if the
file system supports them. Today, most Android devices use

ext4 as a file systems as it is the recommended standard for
versions since Android 2.3 and thus support the xattr library.
Old versions until Android 2.3 used YAFFS2 and some older
models featured f2fs. The drawback of this approach is that
the xattr library cannot be used to store taint information
in external storage in the default Android environment due
to security restrictions. Nevertheless, this solution allows us
to store file-level taint which is the best possible accuracy
without modifying and parsing the whole file on every read-
or write-operation.

4.7. Flow-sensitive sources and sinks

As pointed out in section 3, sources and sinks require
flow-sensitive definitions spanning multiple statements, i.e.
the problem of detecting a source and sink reduces again to
a taint analysis.

One approach would be to include the source and sink
definition into the actual DTA and treat “potential” source
and sink tracing analog to the actual taint tracking. This
leads to high precision but significantly increases the size of
the global taint table, as multiple tentative taint flags would
have to be maintained for a single register, depending on
the number of potential sources and sinks it is a part of.

As typically source and sink definitions span several
statements and only few methods, we identify sources and
sinks by a simple static interprocedural data flow analysis
which is applied during the instrumentation phase and there-
fore does not impact runtime performance. The specification
of sources and sinks in our framework is thus either a regular
expression identifying a single method call, or a program
slice against which the control flow graph (CFG) of each
method is evaluated before the actual instrumentation.

5. Prototype Implementation

With a prototype implementation of our approach we
show that application-level DTA can be realized at a preci-
sion level which is competitive to TaintDroid.

5.1. Bytecode Modification

The instrumentation adds three new classes to an app:
TaintLabel holds the representation of taint labels of
an object. A DynamicTaintLabelManager class stores
taint labels in a global table and provides methods to se-
rialize taint labels for sending them across files and ICC
channels. TaintPropagationLogic holds the repre-
sentation of the configurable taint propagation logic. A
TaintPropagationWrapper traces taints of registers
and is called from code injected into the original app (List-
ing 4).

Listing 4. Taint tracking of a variable ($r1) written to a sink
(sendTextMessage)
$r3 = SmsManager.getDefault();

2 // Injected: trace taint of message content and handle sink
TaintPropagationWrapper.handleTaint($r1);

4 // Actual sink
r3.sendTextMessage("1234567890", null, $r1, null, null);



5.2. Taint propagation logic

Before each statement in the original application, a call
to the TaintPropagationWrapper is injected into the
app, handling the taint effects of the original statement. It
takes as input the registers which are used and defined in
the statement, as well as the type of the statement, and
applies the taint propagation logic. String objects are treated
in a special way in that we represent them by their actual
content, instead of their memory address. This complies with
the Android (and Java) behavior of string interning which
leads to the fact that "x".equals("x") == true al-
though the memory address of the string objects might differ.
Primitive types could be handled either accordingly by their
content or boxing them into a complex object. However, in
our prototype implementation, we deliberately chose to not
trace taint states of primitive types as we found that in most
cases private information is represented in complex objects
and tracing primitive types adds unnecessary overhead and
leads to false positives. Handling the generic GEN and
KILL rules is straightforward: for assignment statements,
the union of the taint flags in the right hand side is assigned
to the left hand side register, whereas the taint of an object
is the union of the taint flags of all its attributes. Control
flow instructions do not affect the taint flag of the involved
registers, i.e., we do not consider implicit leaks.

As for the different ways of handling method calls, the
taint propagation logic operates by default according to the
heuristics introduced in subsection 4.3:

• Taint flags of return values of method calls propagate
to the registers they are assigned to

• If a non-static method is invoked and no return value
is assigned, the base register of the method is tainted
with the union of the taint flags of the base register
and the arguments

• If a static method is invoked, the union of all argu-
ments’ taint flags is assigned to all the arguments

In addition to the heuristic, the user can define the taint
propagation behavior for specific method calls in a separate
XML file. Our prototype declares specific taint behavior for
Collections, Objects, Intents, and StringBuilders. Listing 5
illustrates how Collection.clear() is handled.

Listing 5. Taint propagation of APIs specified in separate XML file
1 <TaintPropagationLogic>

<class name="java.util.Collection">
3 <entry>

<method matcher="equals" name="clear" args=""/>
5 <propagation type="REMOVE" target="base" args=""/>

</entry>
7 </class>

...
9 </TaintPropagationLogic>

5.3. Intents

To send taint flags along with Intents, we use a string-
serialized representation of taints, which we collect in a list
and attach it to the Intent’s extra data.

During instrumentation, we search for statements send-
ing intents and inject one statement adding the taint-extra to
the intent. To avoid side effects, it is ensured that existing
keys are not overwritten and that at the receiving side, a
statement is injected that checks if the intent contains the
extra, reads it, taints the Intent accordingly and removes the
extra data. This way, we transparently transfer taint flags
between instrumented apps without the need to modify any
underlying ICC mechanism. Taint flags are applied at Intent
level granularity, i.e. the implementation does not allow to
distinguish different taint flags of possibly complex data
structures transferred with the Intent. This is however merely
an implementation decision for the sake of performance and
could be replaced by storing a precise mapping between taint
flags and individual data fields in the Intent.

5.4. Shared preferences

Key-value pairs are stored in the
SharedPreferences service by calling one of the put
methods of the class SharedPreferences.Editor.
Whenever such a method is called, we inject a statement
that uses the key of the put-operation to derive an own
unique key pointing to a value holding a serialized
representation of the taint flags of the original value. To
prevent side effects, we further ensure that these artificial
key-value pairs do not influence the rest of the original
application, especially when data is retrieved using the get
or getAll methods.

Wherever the application gets a key, we insert a state-
ment to retrieve taint flags from the corresponding artificial
key and assign them to the register holding the original
value. Where the application uses getAll to retrieve all
key-value pairs from the SharedPreferences service, we
ensure that artificial key-value pairs holding the taint flags
do not become visible to the original application. Hence, we
get all artificial pairs and assign the stored taint flags to the
respective entries in the resulting map. This way, iterating
over all keys is possible in the original application and
the taint flag management remains hidden from the original
code. Dealing with Android system services in such a way
is an improvement over TaintDroid, which is not able to
detect taint propagation through shared preferences [9].

5.5. Files

To store taint flags in extended attributes of files we use
Android’s native library xattr. The most important aspect
is identifying the absolute path of the file which is read or
written. This is not trivial as the filename is typically passed
as an argument to the constructor of a File, FileDescriptor,
Writer, or OutputStream object and is not necessarily close
to the code location where data is actually written into
the stream (or read from it). Thus, to keep track of file
names, we treat them like taint labels and assign them to the
respective object. This way, File objects can even be passed
around across methods without loosing the information on
the absolute path of the underlying file which is accessed.



Before each read and write operation, the instrumentation
adds statements to assign the taint flags of the read file, or
to write the taint flags of the registers being written into it to
its xattrs. Performing this on every read and write operation
reduces performance of the app but is the most precise way
of tracing taint flags because it ensures to have the most
recent taint value, even if the file is continuously read and
written.

6. Evaluation

We evaluated our DTA with respect to precision and the
impact on the runtime performance of the analyzed app.

6.1. Precision

A precise dynamic taint analysis is expected to be
sound, i.e., not report false data flows, and complete, i.e.,
reliably report each critical data flow. The precision is
mainly influenced by the granularity of the taint propagation
logic and the capability to observe data propagation across
process boundaries at runtime. In both aspects, application-
level DTA is conceptually inferior to platform-level DTA,
as it neither has the capability to trace data propagation
beyond API calls, nor to make observations outside of the
current process. We thus evaluated the precision of our DTA
from two perspectives: first we tested against DroidBench2

2.0, the de facto standard test set of Android apps for
benchmarking data flow analysis. At the time of testing,
DroidBench comprises a set of 119 Android apps of which
3 are negative samples and 116 are expected to leak data
(typically the IMEI or user input) to the log or a text
message. DroidBench challenges data flow analysis to cope
with various propagation channels and taint granularities,
including ICC, reflection, and different stages in the Android
application lifecycle. We instrumented all applications with
our framework and manually tested them on an unrooted
stock Nexus 5X smartphone. All apps could successfully be
instrumented and started on the phone. It turns however out
that some apps of DroidBench, being focused on static anal-
ysis, contain bugs which prevent even the uninstrumented
app from performing the actual data leak. For instance, some
apps run into out of band exceptions, while others do not al-
low triggering the leak because it is located in non-exported
and unreachable components of the app which cannot be
executed. Overall, 18 apps of DroidBench were not suitable
for a dynamic analysis. 11 of them do not allow triggering
the flow under normal conditions, 7 contained bugs which
prevented them from proper execution. We thus ended up
with 3 negative and 96 positive test samples. Unsurprisingly,
all negative samples were correctly classified as such, i.e.
we did not detect non-existing data flows. Further, also all
positive samples were correctly detected, i.e. our framework
performed with 100 % accuracy against the DroidBench 2.0
test set.

2. https://github.com/secure-software-engineering/DroidBench

Expected
Positive Negative

Actual Positive 96 0
Negative 0 3

TABLE 1. PRECISION AGAINST DROIDBENCH

While the strength of DroidBench is to challenge a flow
analysis in terms of various propagation channels, it contains
only small test applications. This does not allow to draw any
conclusions on the practical effectiveness of a taint analysis
framework from its precision against the DroidBench set.
As our goal was not only to create a precise, but even more
a practical applicable DTA, we further evaluate how our
framework performs against a set real-life apps.

In contrast to platform-level tainting, an instrumentation-
based approach like ours is affected by the complexity of an
application. Thus, we take TaintDroid as a benchmark for
our approach, knowing that it has a conceptual advantage
which we aim to minimize as far as possible. To compare
our solution with TaintDroid, we first statically analyzed the
10.000 most popular apps from Google Play to identify apps
with potential data flows leaking the IMEI of the phone, i.e.
apps which contain the relevant method calls. We reduced
the set to apps which were still able to run on the latest
platform supported by TaintDroid (i.e., Android 4.3). From
this candidate set we randomly chose further apps and tried
to confirm the data leak using TaintDroid. The result was
a test set of 25 apps which reliably leaked data and were
detected by TaintDroid. Then, we tested these apps against
our solution by instrumenting them and interacting with the
instrumented version in the same way as with the original
one. The test results3 are given in Table 2. One out of

Package name Flow detected App runs stable
cn.menue.heart.activity Yes Yes
c.appfusion.funnyringtones Only source Yes
c.appredeem Yes Yes
c.boyahoy.android Yes Yes
c.chatroulette.snapchat Yes Yes
c.divum.MoneyControl Yes No
c.fry.promi Yes Yes
c.gameforge.xmobile.middleages Yes Yes
c.gameloft.android.ANMP.Glof.. Yes Yes
c.heyzap.android Yes Yes
c.honestwalker.kancart.DHgat.. Yes Yes
c.mobage.ww.a692.Bahamut_An.. / Instr. failed
c.movile.wp Yes Yes
c.nobilestyle.android Yes Yes
c.smartphonereligion.whatsap.. Only source Yes
c.softonic.moba Yes No
c.viaden.yogacom Yes Yes
de.visionmedia.maedchenvie.. Yes Yes
aditor2.aditor.de Yes No
avisador.de.radares.moviles.fijos.. Yes Yes
com.advertapp Yes Yes
com.baiwang.colorphoto Yes Yes
c.cootek.smartinputv5.skin.them.. Yes No
com.joycity.god Yes Yes
com.topmobileringtones.gangst.. Yes Yes

TABLE 2. EVALUATION RESULTS

3. App names truncated for the sake of space

https://github.com/secure-software-engineering/DroidBench


25 apps could not be instrumented successfully because it
was lacking required classes – a situation probably caused
by wrongly configured obfuscation/optimization which pre-
vents the Soot framework from properly resolving the class
hierarchy, but is also prone to runtime instabilities in the
non-instrumented app. Out of the remaining 24 apps, we
detected the critical data flow in 22 apps. For the remaining
two, our solution successfully detected the source of the
data flow but was not able to detect the sink. A manual
inspection revealed that the cause for this false negative
error is that these apps encode the tainted data in primitive
types, which we deliberately do not track in our prototype
implementation. For 4 of the 24 instrumented apps we could
detect a leak, but the app did not run stable.

As for soundness, we argue that the injected taint prop-
agation instructions from section 4.3 do not alter control
flow and do not modify contents of existing registers, but
rather track taint states in a global table. Taint propagation
over external services actually adds persisted entries, but
also ensures that any access to these services is free of
side-effects by removing artificial taint entries before each
operation. The same applies to taint propagation over files
because meta data are not passed on to the application. A
conceptual boundary of our approach would be reached for
applications loading and verifying their own bytecode at
runtime – a behavior we never experienced in the wild.

6.2. Performance

An upper bound of performance deterioration is dou-
bling the number of executed statements in the worst case.
To assess the actual performance impact of our DTA, we
injected statements into a self-created small app consisting
only of statement which are relevant to the data flow – this
is the worst case in terms of performance impact. The time
from start to data leak of the application increased from
299 ms for the original execution path to 429 ms of the
instrumented application. Further, the instrumentation of the
app massively influences the consumption of memory by the
app as for every object, the taint needs to be stored. Again,
we tested the DTA framework against two different apps. For
this evaluation, our small test app is not representative and
lead to only 3.5% of additional memory. For a randomly
selected larger app (5.26 MB) from the Play store, the
number of objects has almost doubled after some time of
execution and the allocated memory has increased by 87%.

7. Conclusions

Our work is motivated by the search for a pure
application-level dynamic taint analysis which is not limited
to specific platform modifications and can still keep up with
the precision of platform-level DTA. Conceptually, our DTA
framework is applicable to all recent Android platforms,
which is a clear improvement over TaintDroid, which covers
only about 18.6% of the available platforms. As expected,
our DTA does however not reach the same precision as

TaintDroid. Nevertheless, the fact that we achieve a detec-
tion rate of 100 % against the artificial DroidBench set and
are able to detect 91.7% of the flows found by TaintDroid in
real applications is encouraging and shows that our approach
is a viable solution for high-precision application-level DTA,
which can be applied to large amounts of applications
without limitations on the platform.
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