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Abstract

Applications processing an increasing volume of structured personal information are
on the rise, fostered by trends like ”Quantified Self”, ”Smart Home”, and ”Future In-
ternet”. As a result, users who want to take advantage of such data analytics services
are confronted with the challenge of keeping their personal data and business secrets
secure, while still providing the information required for the analytics service to oper-
ate. Traditional access and usage control do not solve this problem, as they only take
binary access decisions, but do not enforce specific views on data sets. We propose
a mechanism to control the ways in which data may be processed, thereby limiting
the information which can be gained from data sets to the specific needs of a service.
The core of our approach is to model data analytics as a data flow problem and to
apply dynamic taint analysis for monitoring the processing of individual records. We
propose a policy language to state requirements on the way how data is processed and
enforce measures to ensure that critical data is not revealed. Our approach is based
on the query evaluation of a complex event processing engine, which is thereby turned
into a policy-controlled privacy-preserving data analytics service.

1 Introduction

Keeping personal information under control has been a challenge in computing
ever since. In the case of personal data, privacy concerns must be taken into
consideration and in the case of business data it must be ensured that no infor-
mation relevant to business secrets can be extracted. However, collecting and
providing such critical data is inevitable, if users want to take advantage of the
benefits of data analytics. The goal is thus to make data available exactly to
the degree and in the perspective that is required for specific types of analysis,
while preventing all other ways of extracting information from it. In the context
of this paper, we will refer to data analytics as data usage and understand it as
the application of operations to sets of data records.

Today, mostly access control concepts are found in practice. Users can con-
trol who may access their data and choose third party services they want to
share data with. However, access control is a very limited concept when it
comes to data usage, because it constitutes only a single precondition which
must be fulfilled before data may be accessed. For example, possession of a
specific token, key, or password will allow to retrieve data and use it in any way

1



1 Introduction 2

and for any time span. There is no restriction on how data may be used, in
which way it has to be treated, to whom it may be forwarded, or how long it
may be stored.

Some of these aspects are addressed by the concept of usage control which
has been subject to extensive research in the last decade [1, 2, 3, 4], but has
barely found adoption in practice.

Usage control allows to determine under which conditions resources such as
files, network connections, or databases may be used. It is thus an extension
of the traditional access control paradigm in that it does not refer to a single
point in time before access in granted, but rather aims at continuously enforce
requirements while resources are in use. However, just like access control, usage
control refers to resources in general and does not address the actual processing
of data.

Being able to control the actual way in which data may be used is a pre-
dominant requirement in all scenarios which deal with analytics of personal or
business-critical data, where different views on the data set allow to extract
different information. In the case of personal data, for example, concepts from
privacy research like k-anonymity [5], l-diversity [6], and t-closeness [7] deal
with inference of critical information by correlating uncritical data attributes
and taking into account public background knowledge. This problem is caused
by quasi-identifiers, i.e. attributes when combined, allow to uniquely identify
an individual within a data set. In this case, it must thus be possible to prevent
combined retrieval of respective quasi-identifiers to avoid extraction of critical
information.

We propose a solution to this problem by means of a data usage control
system, which is orthogonal to traditional usage control in that it does not con-
tinuously monitors access decisions on resources like files or sockets, but rather
controls the way how data is used, i.e. how it is processed, transformed, and
combined. Our data usage control system consists of a domain specific policy
language (DSL) which allows users to limit data usage according to their require-
ments and an enforcement mechanism which ensures that data is processed in
accordance with the policy or otherwise takes counteractions.

The core of our approach is to model data usage as a data flow problem
to which we apply a dynamic taint analysis to trace data records as different
operations are applied to them. When data record enter the processing, they
are initially marked with a taint flag indicating their criticality or type (such as
PERSONAL or LOCATION). As they are passed between different operations, their
taint state is tracked and may change, i.e. a record may become untainted or
additional taint flags may be added. When data is about to leave the processing
its taint state is evaluated against the policy, possibly leading to removal or
modification of the record in the result set.

Summarizing, our contribution is in two aspects:

1. a refinement of the traditional usage control concept based on resources
(files, network, etc.) to fine-granular data analytics control

2. a specific enforcement mechanism which controls data processing, instead
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Fig. 1: Aggregating health data from IoT devices

of data access and handling like in previous work.

The paper is structured as follows: section 2 motivates our work by introduc-
ing a use case example and deriving requirements on the usage control system
from it. In section 4 we introduce the data usage control model and discuss its
implementation based on a taint analysis integrated in the evaluation of com-
plex event processing (CEP) queries. In section 6 we discuss the results of our
prototype evaluations and section 7 concludes the paper and outlines future
work.

2 Motivation

We motivate the need for data usage by giving three example use cases from
practice, one for IoT wearables, one for smart manufacturing, and one for tra-
ditional data processing.

2.1 Personal data in IoT applications
Consider a typical IoT setup consisting of a wearable device, a smartphone, and
an only data aggregation services. The wearable device comprises sensors to
collect different types of data on the health status of the user, such as the heart
rate and the current activity as one of sleeping, sitting, walking, or running.
The wearable communicates via Bluetooth with a smartphone which receives
the transmitted data and extends it with a unique user id and the current loca-
tion. The combined data record is then forwarded to a data analytics services
which collects and processes it and offers the result to consumers. In Figure 1,
the analytics service is depicted outside of the smartphone, but is is of course
perfectly feasible to assume it resides within the user’s immediate domain of
control, i.e. as a service on the smartphone, for example.

The challenge here is to make use of interesting analytics, such overall im-
provements in the user’s exercise program, circadian rhythm, and fitness level,
while at the same time preventing the analytics service from gaining further
possibly intimate information such as the specific location at a certain time

2.2 Predictive maintenance in manufacturing processes
Industrial production lines include various sensors to monitor and control the
manufacturing process, such as flow meters measuring the exact volume of in-
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gredients in biochemical production. For the most part, these sensors are highly
complex integrated devices with the ability to communicate with remote end-
points. For the sensor producer it is highly interesting to get access to the
measurements and status information of the devices, as it allows him to early
detect drifts and errors in the device and thereby predict breakdowns and main-
tenances. On the other hand, raw data from sensors in the manufacturing pro-
cess allows to reverse engineer precise formulas and recipes, which are the heart
of a manufacturer’s business secret.

The challenge in this case is thus to allow the sensor producer to run exactly
the analytics required to detect failures in the devices, without revealing raw
data from which business-critical information could be extracted.

2.3 Processing and selling of anonymized personal data
When patients receive a prescription from a GP and buy respective pharmaceu-
ticals from a pharmacy, accounting records for billing the insurance are created
and processed by trusted data centers. These records are however also highly
interesting for statistical analysis on types of diseases, correlated with locations
or doctors, as well as statistical information on medical sales. Data centers are
allowed to offer such statistics, but they must ensure that they stick to data
protection regulations like HIPAA in the U.S. or BDsG in Germany, which re-
quire them anonymize the data. This includes not only removal of first-class
identifiers, but also ensuring that the identity of individual patients or doctors
cannot be reconstructed by combining quasi-identifiers.

The challenge here is thus to provide only specific statistical perspectives
on the data set where each perspective does not contain enough attributes to
impose a quasi-identifier and to ensure that attribute values are blurred in a
way that multiple perspectives cannot be combined into one overall data set.

Our data usage control system is designed to address these challenges and
allow users to precisely state the ways how data may be processed. This in-
cludes the definition of a policy model,including a language which allows users
to express valid ways of processing. By means of the policy model, sources of
sensitive data can be declared. Further, it allows to state restrictions on data
processing such as a minimum or maximum number of aggregated items, the
retrieval frequency, or untainting operations that if applied to data records will
turn them uncritical. Also, operations like projection and selection are control-
lable, in order to prevent specific combinations or correlations of data records
which are considered critical. Finally, the data usage control system allows
users to specify counteractions, i.e. actions to be taken just before critical data
is about to be revealed to the consumer. Typically, a counteraction would be to
block the request, but it is also conceivable to forcibly blind attributes in order
to anonymize records.
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3 Related work

Usage control has been subject to extensive research for more than a decade.
Various models for usage control policies have been proposed, whereas UCONABC ,
originally introduced by Park and Sandhu [2], is the most prominent one and
has undergone different extensions in the course of time, such as [8] which in-
corporates post-obligations. It comprises Authorizations (A), oBligations (B),
and Conditions (C), referring to attributes of subjects and resources. Moreover,
attributes are mutable (e.g., they can change over time) and continuity of ac-
cess decisions is formalized. In this way, UCON A, B and C can be defined to
be evaluated before (pre) or during usage (on). UCONABC leaves open how
to design a specific architecture and mechanisms for usage control. Other ap-
proaches focus on specific languages rather than abstract models, such as the
Obligation Specification Language (OSL) [9]. Much work has been done on the
formalization of usage control policies and the formal analysis of policy prop-
erties. In [1], a formalization of UCONABC in Lamport’s Temporal Logic of
Actions (TLA) is given, in [10, 11] Basin et al. give an approach on analyzing
usage control policies formalized in first-order temporal logic (MFOTL), in [12]
a Linear Time Logic (LTL) dialect is used for the sake of analyzing policies, and
in [13] an analysis of dynamically changing usage control policies is described,
based on Action Computation Tree Logic (ACTL). While our work is based on
this basic research on usage control, our approach is more specific, in that it
focuses on the application of usage control to data processing only.
The enforcement of usage control policies has always been a challenge as it
requires system-specific approaches and trust relationships with enforcement
points, possibly located on remote platforms. In [14], Pretschner et al. propose
to transform non-enforceable obligations into observations which at least indi-
cate violations of the policy. Trustworthy system architectures for usage control
enforcement have been proposed in [15], which allow usage control policies at
the level of system calls, given that the trustworthiness of the enforcement point
can be attested using hardware-based mechanisms. Our approach does not fo-
cus at usage control enforcement on remote platforms, but rather on a specific
enforcement mechanism for data processing. Nevertheless, it could be combined
with techniques from [14] or [15] in case the enforcement would have to take
place on remote hosts.
Closer related to our work is [3], which introduces the idea of using data flow
tracing at the level of system calls in order to enforce usage control policies. The
authors show that based on an underlying data flow model, more realistic and
expressive policy rules can be written, referring to states of a data flow system,
rather than specific sequences of events. In [16], this approached is extended
by tracing messages in the X11 environment, specifically copy & paste actions
on sensitive data which is either blocked or replaced by meaningless data in
case a policy is violated. Similar to [3, 12], we understand usage control as en-
forcing conditions in data flows. Our approach differs from the aforementioned
in that we do not aim at actual flows of data within a system, but rather use
data flows to model complex queries in a data processing system, which allows
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fine-granular control of the way how data must be aggregated or modified to be
used. Also, our policy model is not based on the states of a data flow system,
but on conditions over the propagation of data, which supports an efficient im-
plementation and more expressive policies in the context of data processing.
The approach presented herein relies on an abstract representation of queries
in terms of an abstract complex event processing language. Concrete repre-
sentatives of such languages are the Continuous Query Language (CQL) [17],
StreamQL 1, and the Esper Processing Language (EPL)2, which we used in our
prototype implementation.

Finegranular data flow tracking for databases has been done by applying
taint tracking in [18] for specific applications. A similar approach was followed
by [19], providing an API that allows to introduce taint tracking for legacy web
applications without major code changes. This is also based on taint tracking at
database level and uses hooks that are placed in legacy code to enable security
policy enforcement.

4 Data Usage Control

From the use case in the previous section it becomes clear that a binary access
decision in terms of deny or permit is not suitable and thus neither is access
control. Also the ability to bind access decisions to obligations the data con-
sumer has to fulfill, is only a prerequisite and the interesting question is how
obligations must be modeled in order to regulate details of the data processing.
We thus strive for a model which allows users to express gradual restrictions on
how sensitive data may be used so that it is still possible to provide it in a form
that allows third party services to operate, while at the same time it prevents
misuse cases in which conclusions on personal preferences can be drawn.

4.1 Complex event processing as a generic way of data
processing

In the context if this paper we will regard data processing as information re-
trieval from complex event processing (CEP) queries. Complex event processing
is a technique to select patterns from continuously incoming streams of events.
In that respect it is similar to querying a static relational database system
(RDBMS), whereas the data is not persisted in tables, but rather provided in
the form of temporary events which are only considered when relevant for the
queries registered in the system.

We will decompose CEP queries into data flows and operate on the resulting
data flow graph, which makes our approach applicable to all data analytics that
can be mapped into a respective flow model. Referring to CEP as a processing
technique has several advantages: first, it is highly relevant for practical use
cases dealing with the analysis of large volumes of data records and is generic

1 http://www.sqlstream.com/
2 http://www.espertech.com/

http://www.sqlstream.com/
http://www.espertech.com/
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enough to include traditional RDBMS queries, as well as Big Data algorithms
like Map Reduce. Second, it allows us to integrate data usage control in a single
confined query engine, rather than scattering it across different components.

Consider the following query on a user’s location and activity data to identify
the user’s favorite run tracks within the last month:

SELECT avg ( l o c . l o c a t i o n ) FROM
Hea l th : win . time (1m) [ a c t i v i t y=’ runn ing ’ ] as h ,
Loca t i on : win . time (1m) as l
WHERE h . u s e r i d=l . u s e r i d

Here, two streams of incoming health and location events are expected,
whereas both event types include a field userid which is used in the equi-
join condition. Events from the Health stream are filtered to remove all events
not referring to the activity of running. Finally, as not every single position is
of interest, the 1-minute-average location of the relevant activities is calculated.
While the query is very simple and would require significant tuning to reveal
precise results in practice, it illustrates the concepts of complex event processing.
The syntax corresponds to EPL, but it is not suited for our following discussion,
as it contains syntactic sugar and disguises the actual semantics of the query.
For example, the semantics of the SELECT clause, combines the concept of
selection (select some v ∈ V ) with that of projection (select an attribute) and
aggregation (calculate average of event attributes).

We thus model the query in an abstract syntax which allows us to refer to
well-defined semantics for each operation. As a general assumption, we regard
queries as a mapping from sets of input streams of events to an output set of
events. An event stream is again a set of events, where each event bears a
timestamp so that a complete order over events by the time of their creation is
possible. The mapping is achieved by concatenated operations, where we assume
that each operation is free of side-effects, i.e. operations may create new virtual
events streams but cannot insert, update, or remove events from an existing
event stream.

Operations can perform statistical computations of data records, gather mul-
tiple events in windows, which are either defined by a certain time span in which
data is collected, or filter out records immediately before any further process-
ing is applied. Although actual set of operators is not predetermined by our
approach but may be extended at runtime by plugins. we list some typical oper-
ations supported in our implementation in 1. Table 1 lists the main operations
of the query language, where V denotes the set of events provided by an input
stream, C a boolean condition (predicate) over events v ∈ V , and f arbitrary
functions (whose semantics are not part of the query language considered here).

Note that both select and window realize a selection, but are represented as
separate operations, because select operates on the defined attributes of events,
while window operates on the implicitly defined time of event creation.

The query from above can now be rewritten using the abstract syntax:
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Tab. 1: Data processing operations of the abstract syntax

Operation Description

V ← select(C, V ) Selection of events in set V
where C(v) = 1

V ← projection(a, V ) Selection of attribute e.a of
events e ∈ V

V ← join(V1, V2, C) Returns a subset of Carte-
sian product defined by the
join condition, i.e. V =
V1 × V2

v ← avg(V ) Average of the set V

v ← count(V ) Number of elements in V,
i.e. |V |

C ← window(T , V ) Selection of events in a time
window specified by T

p r o j e c t i o n ( a ,
a ← avg (

s e l e c t (
j o i n (

h← s e l e c t ( a c t i v i t y=’ runn ing ’ , window ( t>1m, Hea l th ) ) ,
l←window ( t>1m, Loca t i on ) ) ,

h . u s e r i d=l . u s e r i d )
)

)

4.2 MapReduce and CEP
If we use CEP as a processing technique, we can show that it is not necessarily
limited to data streams, but is generic and flexible enough to also cover related
Big Data processing approaches like MapReduce. If we take a look at the
definition of MapReduce, we see the projection (Map) of a set of key-value-
tuples to another set, followed by a consolidation (Reduce) to a list of target
values:

Map : K × V → (L×W )∗ : [(k, v)→ [(l1, x1), ..., (lrk, xrk)]

Reduce : L×W ∗ → X∗ : (l, [y1, ..., ysl])→ [w1, ..., wml]

MapReduce is triggered to perform calculations on large data sets. Still, the
data sets change over time and can be modeled accordingly. So a CEP query
can be used to trigger MapReduce:

A continuous re-triggering of a MapReduce cycle leads to a less dynamic
data stream, but one that can still be modeled by our approach.
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4.3 Data usage as a data flow problem
The model of formal operations from the previous section describes individual
data processing steps, but does not say anything about how they are combined
in a query. We thus extend it by a model which puts operations into order and
formally describes queries in a way which allows to apply data usage policies to
them.

The evaluation of a query can be regarded as a directed acyclic graph where
nodes refer to individual operations and edges between two operations denote
that one operation is applied to the output of another. This is not much different
from the representation of a query plan which database systems use internally for
the sake of optimizing the execution order of operations to speed up evaluation
performance. In contrast to a query plan, our goal is however not to restructure
the graph into a semantically equivalent but more rapid execution order, but
rather to provide a model to describe restrictions on the way how data may be
processed.

Stating a query in form of a data flow graph of operations allows us to treat
the evaluation of a query as a single path through that graph. This path can
then be verified against conditions which must hold along each query evaluation
and are set by user-defined policies.

Figure 3 illustrates the flow graph of the example query from the previous
section. It has two entry nodes as the query retrieves data from two different
sources (i.e., tables or streams) and passes them on through a selection, two
windows whose results are joined in a merge, and finally passed on through
three further operations.

Pretschner et al. [12] represent data flows as a Kripke structure, which
allows to state policies in temporal logic and apply model checking to verify them
against the data flow model. While this is a straight-forward theoretical concept,
Pspace-hard model checking as a policy evaluation mechanism is inefficient in
practice [20]. We thus do not go that route, as we aim at efficiently detecting
policy violations at runtime using dynamic taint analysis. For this purpose,
representing data flows in the form of flow equations is more useful.

A query is modeled as a flow graph G(V, I, E, τ,L), where
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Fig. 3: Query evaluation as flow of data between operations

V : set of nodes representing atomic steps in the query evaluation. In each step,
a single operation o ∈ OP is applied to incoming events.
I ⊆ V is a set of entry nodes providing the input event for a query evaluation.
E : V ×V : set of edges indicating that data is passed from one node to another.

Each node v may receive input events from it predecessor, denoted by the
set IN(v) and OUT (v) denotes the set of output events of each node, respec-
tively. Further, GEN(v) denotes the events newly created in v and KILL
denotes deleted events. The flow of data through the query evaluation graph is
consequently described by the following flow equations:

IN(v) =
⋃

p∈pred(v)OUT (p)

OUT (v) = GEN(v) ∪ [IN(v) \KILL(v)]

The specific definition of GEN(v) and KILL(v) depends on the operation
executed in v. For example, operation in in the two entry nodes in Figure 3
will create a GEN set containing all events recorded from the underlying event
streams and will leave KILL empty. The select operation in the subsequent
node will leave GEN empty and instead add all events to KILL which do not
match the selection criterion.

In order to label events with respect to their criticality, we introduce a set of
taint labels L. In the simplest case, L can be {0, 1}, indicating whether an event
is considered critical or not, but also more complex label sets are conceivable, for
instance to indicate the type of labeled data (e.g., {Identifier, Location,Medical, ...}).
A taint propagation logic τop : Events → 2L assigns a set of taint states to
events, depending on the taint state of the input events and the operation op
applied to them.
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4.4 Taint propagation for policy enforcement
The data flow model allows data usage control in the form of a dynamic taint
analysis (DTA) [21]. This technique is traditionally used in program analysis to
detect data leaks and lack of input sanitizations at runtime. Some programming
languages such as Perl3 include concepts for tainting variables and debugging
tools like Valgrind are able to provide specific runtime environments for taint
tracking4. Although the concept of DTA is clear and mature, its application in
the context of program analysis comes with its own challenges. For example,
overtainting is a common problem, which leads to large memory portions of
a process being tainted, for example caused by spreading the taint state over
globally accessible static variables. Also determining a precise and correct taint
propagation logic can be difficult in some cases – for example a tainted integer
being used as index in an array write operation, which may or may not be
considered as tainting the overall array.

Fortunately, some of the problems from program analysis do not apply to
our case, as we regard evaluations of data processing queries which have a
reduced semantics and do not need to deal with global variables, threads, pointer
arithmetic, and other border cases occurring in programs. As a consequence,
much of the fuzziness of dynamic program taint analysis is removed in our case
and the flow model captures much more precisely the semantics of the actual
data propagation, in contrast to program analysis where this is only achieved
approximatively. The approach is however similar, in that we track taint states
of individual events during execution of the query and apply a taint propagation
logic to transfer taint states from one event to another where appropriate. When
data is about to leave the query evaluation, i.e. it ends up in OUTexit of the exit
node, the taint state of all respective events is checked against a user-defined
policy. Depending on the policy, tainted events violating the rules will either be
removed from OUTexit or replaced by a sanitized version.

Policies are discussed in detail in section 5. It is however important to note
that the taint propagation logic and the user-defined policy are distinct. The
taint propagation logic determines how taint flags are propagated as operations
are applied to set of events. For each operation, a respective taint propagation
function τop is given, which may be configurable by a set of parameters. The
policy classifies data sources with taint labels, determines unwanted data flows,
and specifies counteractions to be taken when an unwanted data flow has taken
place. For this purpose, it sets the parameters for the taint propagation logic.

For the sake of space we refrain from discussion the complete taint propaga-
tion logic here. The formulas given for the following operations should however
give an impression of the taint semantics and the configurable parameters which
can be set by the policy. Each row refers to a single operation and states the
taint function which takes events from IN as input and sets the taint state of
events in OUT .

The result of a JOIN operation is the union of the taint states of all input
3 http://perldoc.perl.org/perlsec.html#Taint-mode
4 https://github.com/wmkhoo/taintgrind

http://perldoc.perl.org/perlsec.html#Taint-mode
https://github.com/wmkhoo/taintgrind
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Tab. 2: Taint propagation logic (parameters in bold)

Operation Taint function

JOIN(IN1, IN2, C) τ(v1) ∨ τ(v2)

for v1 ∈ IN1, v2 ∈ IN2, C(v1, v2) = true

SELECT (v, IN) τ(v)

τ(avg(V ))
∨

v∈IN τ(v) for |IN | > t

σ(IN)
∨

v∈IN τ(V ) for |IN | > t

count(IN)
∨

v∈IN τ(v) for |IN | > t

events to the join. The SELECT rule is similarly simple, keeping the taint
states of the selected input event intact. For aggregation operations like avg
and count, the taint propagation logic may be worth discussing. Whether the
number of tainted events in a certain window should be regarded as tainted or
not depends on the specific application and on the overall volume of events.
In the context of this paper, the result of an aggregation function is regarded
as tainted when the number of input events exceeds a certain threshold. This
prevents a possibly malicious data user from retrieving individual data records
by carefully crafting query attributes to narrow down the result set to a single
record. Also, it ensures that data can only be retrieved at a certain level of
aggregation, which is relevant in the case of industrial sensor data, where raw
records might reveal too much information about actual production processes.
We acknowledge however that the choice of a taint policy is not universally
feasible and might differ in other applications.

5 Data usage control policies

Making use of dynamic taint analysis weaved into the query evaluation of CEP
queries requires that users must be able to express their requirements in terms
of a policy. The policy determines the configurable parameters of the taint
propagation logic, taint flags, data sources, and countermeasures to be taken
when the requirements are violated. The language is thus orthogonal to existing
languages like the traditional usage control policy languages like the UCONABC

model, OSL [22], or even the Obligation element of XACML [23]. While these
languages define elements for expressing obligations for a data user, our language
extends on this and provides a way of stating restrictions on data usage, which
is a specific form of obligation.

A policy consists of a set of rules, which are processed in the order they
are specified. The processing is not limited to a single rule, but it is perfectly
valid to have multiple rules sequentially applied to the same data record. The
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definition of data source does however avoid multiple rules from accidentally
overwriting each other, as it would be necessary to include the outputs of one
rule in the inputs of another rule to apply both rules likewise to the same data
record.

Rule : ’ ru le ’ name=ID
r=TaintStmt | Act ionStmt ;

TaintStmt : ’mark ’ ( da taSource+=DataType )+
’ with ’ ( t F l a g s+=TaintType ’ , ’ ? )+
un t a i n t+=AllowStmt ∗ ;

Al lowStmt : ’ al low ’ op=Opera t i on
’ with ’ ( a rg+=Parameter ’ , ’ ? ) +;

Act ionStmt : ’where ’ ’ type ’ dataType=DataType
’ act ion ’ ( ’ block ’ | ( ’ s an i t i z e ’

↪→ f=Funct i on | l=STRING) ) ;

Func t i on : name=ID ;
DataType : name=ID ;
Ope ra t i on : name=ID ;
TaintType : name=ID ;

Listing 1: XText grammar for data usage control policy

A rule is uniquely identified by an ID, chosen by the user. It defines a set
of dataSource elements denoting the name of the considered input streams (or,
in the case of relational databases, names of tables) and the taint flags assigned
to them. Further, the allow element denotes operations which will untaint an
event and sets the parameters for it, which are defined in the taint propagation
logic. This is where parameter t for the aggregation operations from logic given
in Table 2 is set. Parameters have names to make them more understandable
for the user, such as min_count or min_time_window to denote a minimal
number of events to untaint the result of the aggregation function or a minimal
time frame, respectively. By an action statement, the user can control the coun-
termeasures when a tainted event arrives at an exit node. The action is either
dropping the event and removing it from the output (block) or a sanitization,
which replaces the respective event with either a fixed literal or the result of an
external function which takes the current event as input argument.

Referring to the example scenario from above, a policy to require that data
may only be accessed at a certain level of aggregation would look as follows:

r u l e avgHea l thA l l ow
mark Hea l th with T_PERSONAL
a l low avg with min_count=60, min_time=60

r u l e avgLoca t i onA l l ow
mark Loca t i on with T_PERSONAL
a l low avg with min_count=60, min_time=60

r u l e b l o ckPe r sona lDa ta
where type T_PERSONAL
act ion block

Listing 2: Policy for example scenario
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Fig. 4: Example policy in Eclipse IDE

This policy marks both data source ’Health’ and ’Location’ with a taint flag
T_PERSONAL and declares that the taint flag will be removed if more than
60 records within 60 seconds are aggregated by the avg operation. If this has
not been the case and a record marked with T_PERSONAL arrives at the exit
node of the query evaluation, the record will be blocked, i.e. it will silently be
removed from the output.

6 Prototype

For the evaluation of our prototype implementation, we collect data by a provider
component and retrieve it by a consumer component through a CEP query in-
terface. All components are realized as OSGi services and may be distributed in
a network, though performance tests have been done with a local setup to rule
out network latency. Data is represented by events, which are simple POJO
Java beans. The provider component feeds them to different event streams
where each stream corresponds to one type of event. As for complex event pro-
cessing, the provider component uses the Esper5 engine and provides interfaces
for registering queries to the consumer. The consumer discovers the provider
component and registers a CEP query, along with a callback function which is
invoked when results for the respective query are available.

The data usage control mechanism consists of an extension on the Esper
query engine in order to track taint states of events (or event attributes) dur-
ing evaluation, along with a policy language for setting parameters of the taint
analysis. For the policy language, a domain specific language (DSL) has been
created by means of an Xtext6 grmmar, from which the Xtext framework gen-
erates an API for accessing the elements of the policy model. The parameters
provided that way are read by the dynamic taint analysis weaved into the query
engine. Figure 4 shows a screen shot of the policy DSL editor.

Esper provides an instrumentation mechanism which can be switched on for
development builds and provides an architecture to hook into different steps
of the query evaluation. As this mechanism is designed for debugging and not
for taint analysis, further extensions of the hooking API had to be made. We

5 http://www.espertech.com/
6 http://www.eclipse.org/Xtext/

http://www.espertech.com/
http://www.eclipse.org/Xtext/
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Tab. 3: Single query round trip performance (n=1,000)

Profile Mean (ms) σ
Original 0.6258 0.5596
Data Usage Monitoring 0.9360 0.6789

leverage the fact that events in Esper are immutable, i.e. it is guaranteed that
a single Event object will not be deep copied or modified in the course of a
query evaluation. This allows us to keep track of taint states by maintaining a
hash table of event instances and taint states, which is continuously updated by
the taint propagation logic at each step of the query evaluation. Before result
data is passed to the consumer, the provider checks the taint state of all result
events and looks up the policy for countermeasures to take if tainted events are
contained in the output set. Only after the respective events have been removed
(block) from the result set or blinded (sanitize), the provider returns the query
result.

The footprint of our implementation is small and does not add significant
overhead to a normal CEP set up. The overall set up comprising consumer,
provider, and CEP engine sums up to about 5 MB. Our taint tracking extension
to the Esper engine is about 3500 lines of code, whereas only a fraction of it is
executed, depending on the specific operations in a query.

Further, we were interested in the performance overhead that is added by the
dynamic taint analysis. Retrieval speed is crucial in data-heavy applications and
it would be problematic if the integrated taint analysis would have a significant
impact. We measured the round-trip time of a query, i.e. the time from the
initial event entering the query evaluation to the final event being written in the
result set. The actual blinding or removal of tainted events was not included in
the measurement as simply removing an item from a hash table is negligible and
the time required for blinding depends on the actual blinding function. Table 3
shows the mean time for 1,000 query evaluations with and without dynamic
taint analysis. As can be seen, the dynamic taint analysis adds only 0.31 ms to
the evaluation, which makes it applicable even in high-volume event processing
applications.

Measuring memory consumption of the dynamic taint analysis is difficult,
as queries with artificially large memory requirements would have to be created
in order to generate notable impact over the overall fluctuations from the OSGi
layer and garbage collection. We therefore discuss memory consumption only
at a theoretical level. Memory consumption of the taint analysis grows linearly
with the amount of tainted events maintained during a query evaluation. It
must however be noted that not only events from input streams may be written
to the taint table, but also new events generated at intermediate steps during
the query evaluation. As events are immutable, each calculation of an aggregate
function will generate a new event bearing its result. Although this may outdate
previously calculated aggregate events which may consequently be removed from
memory, the taint table will still hold a reference to them, thereby preventing
their removal from memory until the query has been evaluated. That is, the
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amount of required memory will scale with the amount of input events and the
number of operations which generated new events are applied during the query
evaluation. Obviously, more complex queries will thus require more memory,
but especially queries requiring frequent re-calculation of aggregates will add to
memory consumption. In absolute numbers however, we do not expect the taint
analysis to have a relevant impact on the applicability of our data usage control
system, as for each tainted event, merely its address (8 Byte) plus a bitmap of
its taint states in the order of 1 Byte must be stored.

7 Conclusion

We presented a data usage control system which allows to restrict how sensitive
data may be used – an approach which orthogonal to traditional access control
and integrates into generic usage control models like UCONABC . The core idea
of our approach is to model data usage as a data flow, to state restrictions on
how data may be used by setting parameters of a taint propagation logic, and
to enforce them by a dynamic taint analysis which operates at the level of indi-
vidual data records and is hooked into the original query engine. We proposed
a domain-specific language for writing policies which are translated into param-
eters for the taint propagation logic and discussed the results of a prototype
implementation based on a complex-event processing engine. From the evalua-
tion of our implementation we conclude that the performance overhead is small
enough to support real-world applications. Directions of further research are an
abstraction of our policy language to support more high-level anonymitcy con-
cepts like k-anonymity or l-diversity. Also, a further examination of over- and
undertainting effects of the current approach and possible remedies is worthwile
pursuing.
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