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Abstract—Recent years have seen the development of a mul-
titude of tools for the security analysis of Android applications.
A major deficit of current fully automated security analyses,
however, is their inability to drive execution to interesting parts,
such as where code is dynamically loaded or certain data is
decrypted. In fact, security-critical or downright offensive code
may not be reached at all by such analyses when dynamically
checked conditions are not met by the analysis environment.

To tackle this unsolved problem, we propose a tool combining
static call path analysis with bytecode instrumentation and a
heuristic partial symbolic execution, which aims at executing
interesting calls paths. It can systematically locate potentially
security-critical code sections and instrument applications such
that execution of these sections can be observed in a dynamic
analysis. Among other use cases, this can be leveraged to force
applications into revealing dynamically loaded code, a simple
yet effective way to circumvent detection by security analysis
software such as the Google Play Store’s Bouncer. We illustrate
the functionality of our tool by means of a simple logic bomb
example and a real-life security vulnerability which is present in
hunderd of apps and can still be actively exploited at this time.

I. INTRODUCTION

Up to date, Android is by far the most widespread mobile
operating system. Its tremendous popularity and openness has
fostered both the development of increasingly sophisticated
malware, as well as research on security analysis of Android
applications as a response. In recent years, researchers have
developed various tools capable of detecting several types
of application layer vulnerabilities which are increasingly
integrated into a variety of fully automated security analysis
frameworks [9].

Early tools relied mostly on static analysis which is, how-
ever, severely limited under a number of circumstances, for
example when an application’s behavior depends on user or
remote site interaction, when control flow conditions cannot
be resolved statically, when code dynamically creates or
recombines data, or when code is loaded dynamically and thus
not present at the time of analysis. These circumstances can
introduce significant difficulties for static analysis.

These conditions can also be induced on purpose for by-
passing security tests, for example by loading code over the
Internet at runtime which is then not present during static
analysis. Such code can introduce security issues into an
application or be intentionally malicious, e.g., stealing user
data or executing exploit code to gain control over a device.
This way malicious applications can also easily pass the

Bouncer security test system which is in charge of checking
applications in the Google Play Store [10]. Due to these
reasons, prior work addressed dynamic loading and execution
of native code which poses special risks to devices [5].

The deficits of static analysis gave rise to dynamic analysis
techniques. While dynamic testing tools like TaintDroid [4]
have proven their effectiveness, they rely on manual inter-
action of the user with an application or simple record-and-
replay methods, limiting their efficiency. This also bars many
dynamic analysis techniques from being integrated into fully
automatic test tools such as Google’s Bouncer and frameworks
[9], [14], [15], and prevents effective large-scale automated
testing. To overcome this limitation, approaches for automated
UI testing have been proposed, either using slicing of UI
elements [17] or concolic execution, an analysis technique
combining symbolic and concrete execution, to analyze UI
interaction dependent code [1].

However, the challenge with both fully and semi-automated
dynamic analysis is to control execution in such a way that the
actual critical execution paths are invoked and can be observed.
Simple fully automated testing tools as mentioned above may
be suited for continuous GUI testing, but not for systematic
testing of previously unknown applications. In contrast to that,
more formal approaches like symbolic execution suffer from
state space explosion and are not practicable for average size
applications. Additionally, limitations of current approaches
result in incomplete dynamic analysis results. This applies
especially when dynamic conditions do not only depend on
user input but also, for example, on the execution environment
or communication with a remote site – cases which cannot
be covered by UI event generation. Generating the correct
sequence of user inputs may not be easy (or possible) too,
leaving many potentially security-critical code sections undis-
covered.

Addressing the aforementioned issues and strengthening
the stance of dynamic analysis, we present ConDroid, a test
framework for locating critical, interesting, or dangerous code
and enforcing its execution and observability. We achieve this
by means of concolic execution and targeted instrumentation
of applications to steer control flow. Furthermore, while taking
user input into account, our approach is also capable of
reaching code dependent on other factors.

Our framework has a number of advantages over existing
approaches. In contrast to existing dynamic analysis tech-



niques which take UI events into account, we are neither
limited to pre-recorded UI event sequences, nor in fact to UI
events at all. Instead, we can discover all paths in an applica-
tion and their dynamically tested conditions independently of
whether they require user input, sensor or remote site input, or
certain environmental conditions to be met. Our framework, by
instrumenting an app under test, can force execution to follow
paths leading to “interesting”, i.e., potentially security-critical
code sections.

The rest of the paper is structured as follows: In Sec-
tion II, we review existing work in the field of security-
related dynamic analysis of Android applications. Section III
introduces an example motivating our work and sketches the
main analysis steps of our framework. They are explained
in detail in subsequent sections, namely a preparatory code
bytecode instrumentation in Section IV and the concolic exe-
cution in Section V. In Section VI we illustrate how ConDroid
works in action by means of the afore introduced example
and highlight its practical relevance by a critical and wide-
spread vulnerability found by it. A discussion of limitations
and potential future improvements is provided in Section VII,
before Section VIII concludes the paper.

II. RELATED WORK

Research on dynamic analysis of Android applications has
become a hot topic as malware is getting increasingly sophis-
ticated and uses techniques like dynamic code loading in order
to avoid detection by static analysis. As pointed out in [10],
especially the issue of dynamic code loading is critical, as it is
not only difficult to observe and analyze in an automated way.
It also introduces new attack vectors and paves the way for
side-loading malicious code into wide-spread applications. The
analysis carried out in [10] relies on a purely static heuristic
approach, which already delivers great insights. But it also
becomes obvious that static heuristics soon reach their limits,
e.g., if locations to load code from are dynamically crafted.

In contrast to that, dynamic analyses have the potential to
observe malicious behavior at runtime.

One of the first and most prominent tools for dynamic
analysis of Android applications is TaintDroid [4], which
applies a dynamic taint analysis in order to trace data leaks as
they occur during the execution. TaintDroid does not modify
an application’s control flow, but rather observes its behavior
which makes it not suited for fully automated dynamic analy-
sis. In [11], we introduced an approach to inject such dynamic
analysis directly into the application, thereby reducing over-
head and the need of modified system images. Mulliner et
al. propose a dynamic instrumentation of the Dalvik virtual
machine [8] which allows function hooking without the need
to break the code signature of the original application. These
and other dynamic analysis approaches have in common that
they require the user to drive execution of the application to
the respective code section to observe, i.e., they are not suited
for fully automated tests.

A first approach to tackle this problem by applying a sym-
bolic execution has been proposed in [7]. The authors adapt

the Android framework implementation to be supported by
JavaPathfinder [2] and propose respective drivers to simulate
the user’s behavior. Symdroid [6] in contrast, proposes a
dedicated virtual machine capabable of running a subset of
dalvik bytecode in a symbolic fashion. Acteve [1], a concolic
execution tool for Android applications, attempts to overcome
the practical limitation of symbolic execution by proposing a
hybrid symbolic and concrete (concolic) execution of Android
apps. While the general approach of injecting control flow
enforcement into the application is similar to ours, the goal
of Acteve is to achieve the greatest possible code coverage by
generating user inputs in the form of touch events.

Acteve is closest related to our approach, as we also strive
for a concolic execution which does neither require a modi-
fication of the underlying Android platform or the executing
virtual machine. In contrast to Acteve however, we do not
aim at achieving the greatest possible code coverage, but
rather at driving execution towards specific target sections to
observe, whereas we also consider branches whose execution
may depend not only on user input but on any condition.

III. OVERVIEW

The analysis framework proposed herein combines a static
control flow analysis with hybrid concrete and symbolic execu-
tion (concolic execution) in order to observe an execution path
which leads to a specific target section containing “interesting”
code, e.g., dynamic code loading [10] or invocation of native
methods [5]. Without loss of generality, we regard the target
section as a single statement.

A. Illustrative example

To illustrate our approach, consider the method in Listing 1
which acts as a simple logic bomb. We assume the method
is part of an Android application and is registered as a
BroadcastReceiver for incoming text messages.

p u b l i c c l a s s Mal lo ry ex tends B r o a d c a s t R e c e i v e r {
p u b l i c vo id onRece ive ( C o n t e x t c tx , I n t e n t i ) {

. . .
i f ( System . c u r r e n t T i m e M i l l i s ( ) >1483228800) {

i f ( a n d r o i d . os . B u i l d .BRAND!= n u l l ) {
i f ( ! a n d r o i d . os . B u i l d .BOARD. c o n t a i n s ( " g o l d f i s h " )
) {
DexClassLoader d c l = new DexClassLoader ( l i b p a t h

,
dexOutDir . g e t A b s o l u t e P a t h ( ) ,
nul l ,
C l a s s L o a d e r . g e t S y s t e m C l a s s L o a d e r ( ) ) ;

C las s <?> c l a z z = d c l . l o a d C l a s s ( " SomeClass " ) ;
}

}
}

}
}

Listing 1. Time-based logic bomb with subsequent dynamic code loading

The Android framework will invoke the method whenever
a text message arrives. Only if the current date is after
2017/01/01 and the code does not run in an emulated en-
vironment, indicated by the goldfish kernel, the payload will
dynamically be loaded and executed.



Hence, execution of the dynamic code loading does not only
depend on user input but on conditions of the environment.
Fuzzing user inputs or slicing UI elements will never be
able to trigger and observe the code loading. We therefore
strive for an approach for controlling conditions over any API
calls and constants so as to drive execution along the path to
the dynamic code loading. Yet, our approach works by only
instrumenting the application under test and does not require
any modification of the underlying Android framework.

B. Analysis Framework

Our approach consists of multiple steps. The first is a
preparatory static analysis step to identify target sites and paths
leading to them, which we will detail in Section IV. The
subsequent steps are done by a concolic execution to force
control flow onto the desired paths, explained in Section V.
Combined, our approach proceeds as follows:

1) Preparatory static analysis to find call paths to “interest-
ing” code parts from all entry points, including lifecycle,
input event, and external caller induced entries.

2) Adaptive concolic execution:
a) Instrumentation of the application along these

paths which allows us to overwrite registers at
runtime

b) Instrumentation of the application along these
paths which dumps the path conditions

c) A solver which takes the path condition, negates
its last condition and solves the resulting constraint
problem. This new solution to the condition before
a branch ensures that the second execution path
behind a conditional branch is followed as well.

d) The set of register values which will be used for
the next execution, enforcing the execution of a
different path

e) A heuristic which will select additional call paths
to invoke before the actual one, in order to initialize
null references.

Figure 1 illustrates the overall workflow of the analysis
framework.

IV. STATIC CALL GRAPH ANALYSIS

The static analysis step is concerned with finding entry
points of the application and call paths to target statements. In
contrast to standalone programs, Android applications do not
have a single main method, but rather provide various callback
methods which are mostly invoked by the Android framework
in an event-driven manner, or even directly by other appli-
cations. Further, each application may directly load and exe-
cute code from other applications using DexClassLoader
with the CONTEXT_IGNORE_SECURITY flag – in this case,
however, execution takes place in the process of the calling
application. Thus there is no overall correct set of entry
points and choosing an appropriate set depends on the analysis
purpose. In general, for concolic execution all application
methods which may be called by the Android framework in the
context of the application’s process are relevant. However, for

practical reasons it must be considered that each additional
entry point will increase the number of executions by a
multitude and thereby increase the analysis time significantly.
We therefore limit the set of entry points to those we consider
most relevant and extend the call graph of the application so
as to make these entry points reachable from the default entry
point, which is the default Activity’s onResume method.

a) Android lifecycle methods: First, we are interested in
all methods triggered by Android lifecycle events. That is,
the call graph will be extended by edges from the default
Activity’s onResume methods to methods of all Activities,
Services, Receivers, and Providers (ASRP), implementing the
ActivityLifecycleCallbacks interface.

b) References to views: Android UIs consist of Views,
which are either declared in XML files or created programmat-
ically. They are inflated when a screen is rendered, depending
on screen resolution, rotation, etc. Classes inheriting from
android.view.View are instantiated by the LayoutInflater
just before they are inflated. While the exact time of inflation
cannot be determined from the application code, we approx-
imate it by adding edges to the call graph whenever a com-
ponent calls findViewById(int), which is the standard
way of getting a reference to the instance of that view. Thus,
the additional edges overapproximate the actual execution,
but they are correct in the sense that upon invocation of
findViewById(int) it is guaranteed that the constructor
of the view has been called.

c) UI event handlers: An Android application may reg-
ister handlers for a wide number of UI events such as clicking
or dragging. Handlers registered for such events can advance
execution into code sections which would not be reached
without user interaction. Thus, the application is extended by
artificial calls to these handlers to ensure that the respective
code parts are reached, even without user interaction.

d) Intents: Further, we extend the call graph to take into
account intra-application Intents.

Intents can either be sent explicitly to a component by
addressing its class name or implicitly in a publish-subscribe-
manner. We consider only explicit intents and identify the
receiver’s class name. Whenever an explicit intent to a method
X.x is found to be sent from a method Y.y, a respective edge
Y.y → X.x is inserted into the call graph. Again, the edge
reflects an incorrect context but it is correct in terms of the
execution sequence.

Figure 2 depicts a call graph with the artificially inserted
edges as dashed lines.

Finally, we trace back the execution paths from the target
statement to all entry points and consider these for the follow-
ing instrumentation and concolic execution.

V. CONCOLIC EXECUTION

In the next step, the application is prepared for concolic
execution. Concolic execution is a hybrid of a plain execution
of the application with concrete register values, and symbolic
execution which represents register values symbolically. The
idea of symbolic execution is to trace symbolic registers at
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Figure 1. Sequence of steps performed by ConDroid

<DexClassLoader.<init>(..)>

<BaseDexClassLoader.<init>(String,File,String,ClassLoader)>

<ak.f(Context)>

<PunkteActivity.onCreate(Bundle)>

<AdView.<init>(Context,AttributeSet)>

<AdView.<init>(Context,AttributeSet,int)>

<NotenActivity.onCreate(Bundle)>

<d.<init>(Ad,Activity,AdSize,String,ViewGroup,boolean)>

<AdView.a(Activity,AdSize,String)>

<AdView.<init>(Activity,AdSize,String)> <AdView.a(Context,AttributeSet)>

<DfpAdView.<init>(..)>

<DfpAdView.<init>(Context,AttributeSet,int)>

<SwipeableDfpAdView.<init>(Context,AttributeSet,int)>

Figure 2. Call graph extension (potential entry points E in pink, artificial
calls dashed)

each conditional statement in order to build path conditions for
specific execution traces. Consider the following code snippet.
Symbolic execution will treat the three registers as symbolic
values x′, y′, and z′ and create path conditions PC1 =< ((x′+
y′)50) and PC2 = not(< ((x′+y′)50)), corresponding to the
execution of PC1 and PC2, respectively. For a more detailed
discussion on symbolic execution we refer to [12].

p u b l i c vo id t e s t ( i n t x , i n t y ) {
i n t z = x + y ;
i f ( z <50) {

/ / PC1
} e l s e {

/ / PC2
}

}

Listing 2. Conditional statment leading to two path conditions

Concolic execution aims to address the notorious state explo-
sion problem by executing the program with concrete values
and tracing symbolic counterparts of only certain registers
in parallel. That is, the program is executed in its normal
context and conditional branches are evaluated using concrete
register values. In addition, however, symbolic shadow copies
of registers are maintained and the path condition of the
current execution trace is dumped.

In order to enforce a new execution path, a new path
condition is created by negating the condition of the last
executed branch, i.e., PC ′ = c1, c2, ...¬ck. Using a constraint
solver, a set of concrete register values is found, which would
lead to the execution of the new path when injected before the
respective conditional statements in the program.

In the following, we describe the preparation of an Android
application for concolic execution, the procedure of iterative
execution of the application and the actual concolic execution
semantics.

A. Preparatory instrumentation

Symbolic execution is usually implemented at the virtual
machine level, i.e., specific virtual machines trace symbolic
variables and path conditions, independent from the concrete
execution. Examples for this approach are S2E and KLEE for
native code, or JPF [2] for Java bytecode.

With concolic execution, however, the application is mostly
executed normally, while only some variables have to be traced
symbolically. Hence, it is more sensible to inject symbolic
tracing into the original application and run it in an unmodified
execution environment. Acteve [1] chooses this approach and
instruments the application and the Android framework, rather
than modifying the VM.

We thus followed the latter approach and based our imple-
mentation on the Acteve prototype, which we extended by an
upstream static analysis and the ability to inject solution values
for arbitrary method calls and fields in order to manipulate
conditions along the call path.

1) Selectively jump to entry points: In a normal execution,
the Android framework manages events such as user inputs or
received messages and calls the corresponding entry point of
an application. Our goal is however to immediately observe an
interesting execution path, no matter which sequence of input
events is required to trigger it. Therefore, the application is
instrumented in such a way that all entry points mentioned in
section IV are immediately called from the application default
entry point. In detail, the instrumentation proceeds as follows:

The application’s default entry point is the onResume
method of its default Activity, or of its Application component,
if defined. At the end of the default entry method, the An-
droid lifecycle methods of all further application components
are invoked. In addition, the initial lifecycle handlers of all
components along the call path are extended by direct calls
to UI event handlers which are used in the component’s
layout. For example, an Activity using a layout with several
Buttons and TextViews will have calls to the onClick()
and onTextChanged() methods of the registered handler
classes injected into its onResume method. Listing 3 shows
an instrumented entry point method.

p u b l i c vo id onResume ( ) {
AdRequest a r = new com . go og l e . ads . AdRequest ( ) ;
AdView av = t h i s . adView ;



av . loadAd ( a r ) ;
a n d r o i d . c o n t e n t . C o n t e x t c o n t = t h i s .

g e t A p p l i c a t i o n C o n t e x t ( ) ;

/ / I n v o c a t i o n o f f u r t h e r A c t i v i t i e s a l o n g t h e CP
I n t e n t i n = new I n t e n t ( con t , com . goo g l e . ads .

A d A c i t i v i t y . c l a s s ) ;
t h i s . s t a r t A c t i v i t y ( i n ) ;
/ / I n v o c a t i o n o f UI e v e n t h a n d l e r s :
View . o n C l i c k L i s t e n e r o c l 1 = s o m e O n C l i c k L i s t e n e r ;
o c l 1 . o n C l i c k ( someView ) ;
re turn ;

}

Listing 3. Instrumented Android lifecycle entry point

Adding calls to UI event handlers and other components
only at the end of the initial lifecycle method is a heuristic
which aims at enforcing all selected call paths but still allowing
the application to initialize as usual. This is important as ap-
plications often require initialization of databases or file struc-
tures at first start or set static fields which are needed at a later
time during execution. In theory, suitable object instances for
these fields could be generated by symbolic execution. CUTE
[13], for example, a tool for concolic execution of C code,
attempts to solve this problem by using the constraint solver’s
solutions to create memory graphs for objects which are re-
quired to be non-null. This, however, is not feasible in practice
where complex objects like android.content.Context
would have to be efficiently generated. We therefore rely
on the existing initialization routines of the application and
inject all modifications only after them. While ConDroid is
not able to generate any object instance as needed, many
typically required objects can be generated on the fly. For
example, when an android.content.Context object is
not present in a method we can acquire one by retrieving
it from an injected call to getApplicationContext()
in the application’s main entry method and storing it in a
publicly accessible static variable which can be accessed from
all over the application. Other object instances may require
further generation heuristics and where we are not able to
create appropriate instances, we omit insertion of the method
calls requiring instances as arguments.

2) Symbolic registers and path conditions: All methods
along the chosen call path will have symbolic complements
added to their registers. That is, for each local register r, a
symbolic register r′ is introduced and for instructions writing
to r, a symbolic counterpart is added. These are initially
limited to arithmetic operations over primitive types, but can
be extended by symbolic models of any method.

Further, at each conditional branch, the respective condi-
tional expression over the symbolic registers is created and
will be dumped to the console.

For registers of boolean type, the path condition is not
immediately dumped, but ConDroid rather attempts to trace
back the register value to a function supported by the SMT
solver and use it instead of the original conditional operation.
For example, consider the following code for comparing two
strings.

$z0 = $r0 . j a v a . l a n g . S t r i n g : boo l c o n t a i n s ( "X" )
i f ( $z0 == 0) go to l a b e l A

Instead of using eq($z′0 0) as a path condition, the use-def-
chain of $z0 leads to the method call to String.contains
which is in fact supported by the constraint solver. Thus,
the path condition is turned into contains($r′0 ”X”) which
will lead to the semantically richer solution for $r0 instead
of one for the boolean variable which is merely used in
conditional. Such backtracing is necessary, as it allows to
retrieve solutions for actual complex objects, rather than for
the result of comparison methods such as equals.

3) Models of methods and fields: Finally, we allow to
overwrite return values of individual method calls and field
values by a solution, i.e., concrete values computed by the
constraint solver. This way, not only user inputs can be
modeled, but also any Android API method can be replaced
by a symbolic counterpart. As a result, potential code cover-
age of the concolic execution is expanded to blocks whose
reachability does not depend on mere user input, but on any
condition on the execution environment.

This is an essential feature when it comes to analyzing
potential malware, as it allows to solve conditions of typical
logic bombs or countermeasures such as attempts to detect
an emulated execution environment in order to hide malicious
behavior from dynamic analysis tools.

B. Concolic execution semantics
By instrumenting the original application we slightly change

its execution semantics. Mainly, the way how method invoca-
tions and assignments referring to modeled methods and fields
are treated is changed so as to replace the original assignment
with the injected solutions. In the following, we detail the
changed semantics.

We regard an Android application A as a program consisting
of classes c and methods c.m ∈Meths, made up of statements
stmt. During execution a program counter pc points to the
next statement to execute, which is retrieved by insAt(pc).
Each statement denotes a transition of program configurations
C = ⟨S,H,SF ⟩. Here, a static heap S denotes the set of
static fields, a heap denotes a set of non-static fields, and a
stack SF denotes the vector of stack frames at the current
point of execution. Each stack frame sf ∈ SF is denoted by
s = ⟨m,pc,R⟩ where m and pc refer to the current method
and program counter and R is the set of local registers.
We further add symbolic representations of local registers,
non-static fields, static fields, and specific methods, and denote
them by Γ, while concrete values are represented by γ. Thus,
R.γ refers to concrete values of local registers and R.Γ to
their symbolic counterparts.

Operational semantics of Dalvik bytecode have been given
in [16]. We instrument the application code to change the
semantics of some statements along the call paths to the target
statements, without requiring any modification of the actual
Dalvik VM. For symbolically modeled methods we intro-
duce an operation call, summarizing the invoke-* and



move-result operations for method invocation and retrieval
of return values. Likewise, the load-* operations retrieves
values from symbolically modeled static and non-static fields.
In the following, we give the modified execution semantics of
call and load-* which basically denotes the replacement
of concrete return values and fields by injected solutions for
the respective models. Note that the given semantics applies
only to statements along the afore identified call paths. The
rest of the application remains untouched.

C. Iterative execution

The thus instrumented application is now iteratively exe-
cuted, where each run is configured with a set of symbolically
modeled functions and a solution, i.e., a set of concrete register
values to replace the actual return values from Android APIs.
During the execution, conditions over symbolic registers are
collected in a path condition. As soon as the execution deviates
from the intended call path by branching to the wrong basic
block, the last clause of the path condition is negated and a
SMT solver is applied to generate a new solution of concrete
register values leading to execution of the intended basic block.
Due to the injected direct jumps to entry points, a single run
will sequentially execute all entry points of the application, so
that the number of executions will only depend on the length
of the call path to observe, but not on the number of potential
entry points, i.e., UI widgets and callback functions.

VI. PROTOTYPE EVALUATION

The framework can be easily adjusted to locate interesting
code sections of a big variety. It will subsequently identify call
paths to them and steer execution accordingly. To demonstrate
its capabilities in practice, we chose the prevalent problem of
dynamic code loading which poses significant risks to devices
and manages to fool many security analysis tools easily and
thus goes unnoticed.

A. Analysis of dynamic code loading

Dynamic class loading and method invocation via reflection
is an often used pattern in Android applications. In fact,
among the 10,000 most popular apps from the Google Play
store, we found 7,923 occurrences of the dynamic class
loading via Class.forName(). Around 45% account to
Google Analytics and 22% to Google Ads. However, there
are still 2,733 applications loading more critical APIs, such
as sun.misc.unsafe or android.os.Properties,
which allow direct memory manipulation and access to internal
properties of the device platform.

As dynamically loaded bytecode is out of the scope of
traditional static analysis and is not required to be signed
or distributed through the normal app store, dynamic class
loading is an attractive feature for malware authors and the
need to analyze it in an automated way is obvious.

Once dynamic loading of classes can be observed at run-
time, it is possible to dump the loaded bytecode and integrate
it into the original application, as described in [3]. We thus

illustrate how ConDroid can be used to automatically drive
execution towards such critical statements, even if they would
not be reachable under normal circumstances.

Referring back to the logic bomb example from Section
III-A, we consider a conditional execution of dynamic code
loading which would only become active at a specific time and
on a specific platform. ConDroid will detect such conditional
execution of malicious code, as follows:
● Static call path analysis

In a first step, the Mallory.onReceive method will
be identified as an application entry point and the class
loading statement as a target. The call path thus comprises
only the single method onReceive.

● Call path modification
During the call graph modification, a direct call from the
main activity’s onCreate method to the onReceive
handler from Listing 1 is inserted.

● Solution injection and symbolic tracing
The first condition depends on an API call, which is
consequently symbolically traced and its concrete value
is overwritten by a solution.

● Extending conditions to modeled predicates
The second condition is a boolean comparison. The use-
def-chain of the involved register is traced back to the
String contains method, which is supported by the
SMT solver. Therefore, the original condition $z0 ==
0 is replaced by $r2 contains ”goldfish”.

After this preparation, the iterative execution starts.
● First execution with concrete values

In the first run, the solution set is empty and no replace-
ment of concrete register values takes place. The initially
dumped path condition is
not > ( currentTimeMillis 1483228800)

● Solving integer API condition
The last (and so far only) entry of the path condition
is negated and solved using the Z3 SMT solver. The
value (currentTimeMillis ↦1483228801) is written to the
solution map and a second run of the app is started.

● Solving string constant condition
Identically to the previous step, the next path con-
ditions not (Brand null) and contains (Board
”goldfish”) are dumped, negated and added to the
constraint system handed over to Z3. We use the Z3
extension Z3-Str1 which provides an SMT string theory.
In this case, the solutions (Brand ↦ ””) and (Board ↦
”q”) are found and written to the solution map.

● Hitting the target
At another execution run, all three conditions are fulfilled
and the call path to hit the dynamic code loading state-
ment is executed:
Mallory.onReceive is invoked due to the imme-
diate entry point invocation, the return value of the
System.currentTimeMillis function call, as well
as the field values android.os.Build.BRAND and

1http://z3.codeplex.com/releases/view/95640



call

m.instAt(pc) = invoke-*m′ m.insAt(pc + 1) =move-result x
m′ ∈Meths

A ⊢ ⟨S,H, ⟨m,pc,R⟩⟩⇒ ⟨S,H, ⟨m,pc + 2,R [x→Meths.Γ (m′)]⟩⟩

load-static
m.instAt(pc) = sget-* y, x y ∈ R x ∈ S

A ⊢ ⟨S,H, ⟨m,pc,R⟩⟩⇒ ⟨S,H, ⟨m,pc + 1,R.γ [y → S.Γ (x)]⟩⟩

store-static
m.instAt(pc) = sput-*x, y y ∈ R x ∈ S

A ⊢ ⟨S,H, ⟨m,pc,R⟩⟩⇒ ⟨S.Γ [x→ y] ,H, ⟨m,pc + 1,R⟩⟩

load-instance
m.instAt(pc) = iget-* y, x y ∈ R x ∈ S

A ⊢ ⟨S,H, ⟨m,pc,R⟩⟩⇒ ⟨S,H, ⟨m,pc + 1,R.γ [y → R.Γ (x)]⟩⟩

store-instance
m.instAt(pc) = iput-*x, y y ∈ R x ∈ S

A ⊢ ⟨S,H, ⟨m,pc,R⟩⟩⇒ ⟨S,H.Γ [x→ y] , ⟨m,pc + 1,R⟩⟩

Figure 3. Excerpt of the operational semantics deviating from standard dalvik bytecode

android.os.Build.BOARD are overwritten by an
injected solution. The target statement is executed and
the actually loaded code can be observed. A simplified
version of the method modified to reach the target state-
ment is provided in Listing 4.

p u b l i c c l a s s Mal lo ry ex tends B r o a d c a s t R e c e i v e r {
p u b l i c vo id onRece ive ( C o n t e x t c tx , I n t e n t i ) {

. . .
i n t x = System . c u r r e n t T i m e M i l l i s ( ) ;
x = U t i l . g e t S o l u t i o n ( 0 ) ; / / 1483228801
i f ( x >1483228800) {
y = a n d r o i d . os . B u i l d .BRAND;
y = U t i l . g e t S o l u t i o n ( 1 ) ; / / " "
i f ( ! y != n u l l ) {
z = a n d r o i d . os . B u i l d .BOARD;
z = U t i l . g e t S o l u t i o n ( 2 ) ; / / " q "
i f ( ! z . c o n t a i n s ( " g o l d f i s h " ) ) {

DexClassLoader d c l =new DexClassLoader ( l i b p a t h ,
dexOutDir . g e t A b s o l u t e P a t h ( ) ,
nul l ,
C l a s s L o a d e r . g e t S y s t e m C l a s s L o a d e r ( ) ) ;

C las s <?> c l a z z = d c l . l o a d C l a s s ( " SomeClass " ) ;
} } } } }

Listing 4. Method altered by ConDroid to enforce execution of target site

B. Application to real-world applications

In a second evaluation, we applied ConDroid to non-trivial
applications from the Google Play store. As we will discuss in
the following section, execution with the ConDroid prototype
may lead to invalid execution contexts, so that it does not
reliably drive execution along the desired call path in each
and every application. Nevertheless, we were able to find a

wide-spread vulnerability in applications based on the wide-
spread framework for running Flash-based applications on
Android2. The boilerplate code of the respective framework is
kept in a separate application and is loaded by each application
using that framework at startup. As the loading takes place
in a conditional branch, depending on the availability of the
framework, it is not observable by a simple dynamic analysis
in the Android emulator.

ConDroid automatically creates and injects a solution for
the respective condition and executes the dynamic loading
attempt which can consequently be observed. As there are no
further integrity checks on the loaded code, an attacker would
simply have to deploy malicious code with the package name
of the framework on the victim’s phone to have it loaded and
executed in the context of a benign flash-based application.
As a result, the attacker would be able to execute arbitrary
code in the security context of the benign application and get
access to all data managed by it.

Among the 10,000 most popular applications from Google
Play, 172 were prone to this vulnerability which we could
automatically discover using ConDroid. Although in this case,
the vulnerability is not deeply hidden in the code, even this
simple example shows how powerful concolic execution can
be for automatic discovery of previously unknown security
vulnerabilities, which will not be revealed by current, simpler
dynamic analysis techniques.

2The vulnerability has been reported to the vendor in July 2014



VII. DISCUSSION

While our approach strengthens the stance of dynamic
analysis, it still has a few limitations.

First, it is limited to bytecode only and cannot influence
control flow within native code. The transition from bytecode
to native code is a general hurdle in Android application anal-
ysis and further research on integrating both into a consistent
model is needed.

Second, difficulties arise when there exist only execution
paths which require the construction of complex objects.
ConDroid is currently able to create primitive types, strings
and complex objects which only require simple instantiation
by the default constructor. A special case is the often used
android.content.Context instance which is retrieved
at start of the application and made available throughout it.
Apart from that, the creation of complex objects with specific
attributes and methods is currently not supported, although
approaches similar to the creation of memory maps described
in [13] would be applicable.

A third challenge are erroneous execution contexts caused
by injected concrete instances for complex objects. Generation
of concrete instances depends only on the path condition
but not on any further assumptions which are not explicitly
expressed in conditional statements but necessary for a correct
execution. Incorrectly generated object instances can lead
to unexpected behavior such as exceptions being thrown or
control flow deviating from the intended path, due to side
effects or because of non-initialized objects. One approach to
tackle this problem is to infer assumptions on complex objects
in a static analysis and to inject explicit checks for them into
the code.

The three problems explained in this section are no specific
limitations to our approach, but apply to concolic execution
in general. However, as we have shown, ConDroid is already
able to cope with real-life applications and to discover vulner-
abilities in them. Extensions and heuristics for object instance
generation will further increase the coverage of ConDroid.

VIII. CONCLUSION

In this paper, we introduced ConDroid, a new framework
for targeted dynamic analysis of Android applications. Unlike
previous dynamic analysis tools for Android applications, it
allows for fully automatic analysis of applications while ensur-
ing that all interesting code sites are reached to enable further
analysis of such target sites and their effects. The definition of
such interesting code sites can include, for example, dynamic
loading of code, a prevalent problem for Android security
and not yet satisfyingly analyzable by previous approaches.
We can force applications under test to load and thus reveal
code usually only loaded during real execution. Analysis
supported by the techniques described in this paper can hence
not be as easily evaded as current approaches which can be
circumvented by only loading harmful code under conditions
which are not met by an analysis environment. However, target
specification is not limited to that and code of interest can be
arbitrarily defined. ConDroid thus ensures the discovery of all

code sites that are of interest to an analysis and enforces their
execution such that their effects can be observed.
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