
App-Ray: User-driven and fully
automated Android app security
assessment

Dennis Titze, Philipp Stephanow, Julian Schütte
{titze,stephanow,schuette}@aisec.fraunhofer.de
Fraunhofer AISEC, Germany

November 24, 2013

Android is currently the prevailing mobile operating system accompanied by a
huge number of apps available at various online market platforms. To protect
against malicious or vulnerable apps, Android comprises a permission-based se-
curity model and some, but yet opaque security checks conducted by Google
Play. Under these conditions, assessing the security of an app according to
user-specific requirements is hardly possible. Nevertheless, end users and pro-
fessionals, such as IT administrators, need to understand apps’ security implica-
tions prior to installation or rollout. To address this need, we present App-Ray,
a novel security scanning framework which analyses apps according to user-
specific security requirements. The contribution of our paper is a method to
refine such requirements to specific test criteria, and to automatically combine
static and analysis methods for their evaluation. We demonstrate the feasibility
of our approach by implementing a prototype and running user-specific analysis
on 50 apps.

1 Introduction

The paramount success of the Android smartphone operating system and its
openness have lead to a huge number of apps available from online market
platforms, such as Google Play. In these online markets, many apps contain
vulnerabilities, data leaks, or threaten users’ privacy by collecting personal infor-
mation and tracking their behavior. Such security breaches do not necessarily
spring from malicious intents of a developer. Flaws that lead to security issues
often result from programming errors, caused by time pressure or lack of ex-
perience. Unfortunately, such flaws and subsequent vulnerabilities are usually
not covered by the platform’s security model. This problem also applies to very
popular apps which enjoy trust by the majority of users. Although the permis-
sion model of Android is able to prevent apps from using functionality they did
not request, e.g., access to Internet resources, it does not support to check the
usage of these resources in more detail, e.g., for legitimate URLs, proper use
of TLS, or the amount of transferred data. Users have no other possibility but
to accept all permissions required when installing an app, even though an app
may be over-permissive or contain undesired functionality. Therefore, a user
cannot assess whether an app actually complies with her security requirements,
even if it remains within the Android permission model.

Complicating the issue even further, nowadays private smartphones are often
used for professional purposes. In this Bring-Your-Own-Device (BYOD) con-
text, it has to be decided which business apps can be considered secure, for
example, before distributing them over a private marketplace or simply recom-
mending them to employees. Of course, these apps must not contain any ma-
licious code, but it is also important that they do not leak any information, for
instance, when being used in insecure networks. Furthermore, it has to be as-
sessed if these apps comply with the overall security guidelines of the company
and do not contain hidden functionality, such as taking pictures or recording
audio input.
To address these challenges, we propose a framework called App-Ray. The two
contribution of this paper are:
User-specific configuration of detection mechanisms. Starting from high-level
security requirements, user-specific declaration of a security requirements cata-
log is derived and mapped to specific detection rules.
Automated combination of static and dynamic detection techniques. Accord-
ing to the detection rules specified by the user, static and dynamic detection
mechanisms are automatically combined and executed.

The remainder of the paper is structured as follows: The next section gives a
brief overview of related work. Section 3 introduces the combination of static

4 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

1 Introduction

and dynamic detection mechanisms, presents the architecture of App-Ray and
details on user-specific configuration of malware detection techniques. In sec-
tion 4, the prototypical implementation is presented. Section 5 concludes this
paper and provides an outlook on future work.

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

5

2 Related work

Work related to ours is concerned with automated static and dynamic analysis
of android apps and unassisted software analysis in general. Also, our frame-
work includes various existing tools for analyzing Android apps, such as apktool
[4], a tool for unpacking APK files and inspecting their manifest file, and smali
[5], an assembler/disassembler for dex bytecode. While these are helpful tools
for creating a framework like App-Ray, they provide limited functionality and do
not aim at a comprehensive and automated security inspection of apps as we
do.

Dynamic analysis aims to identify vulnerabilities and data leaks at runtime, i.e.,
by executing and monitoring an application. A straight-forward approach is un-
dertaken by [9] who executes an app within an emulator and simulates user in-
teraction via the Google monkey service. The goal of this work is to observe the
behavior of the app in term of system calls and network traffic. [24] presents
MADAM, a framework which monitors execution at different layers to identify
malware.

Dynamic taint analysis takes on a more systematic, but heavyweight approach.
A prominent solution is TaintDroid [15], a specially crafted Android image capa-
ble of detecting sensitive data which is about to leave the device via untrusted
sinks. However, this approach suffers from two main drawbacks: Firstly, it re-
quires significant modification of the Android middleware and kernel. Secondly,
it does not actively search for vulnerabilities but rather enables the system to
detect such when they occur. Dynamic tainting alone is thus not suited for a
fully automated analysis of apps. Nevertheless, TaintDroid provides meaningful
insights and has been picked up and extended by other tools such as droidbox
[1].

One way to control the coverage of control flow paths is symbolic execution.
Here, an app is not actually executed, but variables are rather filled by “sym-
bolic” values and the analysis creates logical statements for each variable as
it traverses the control flow paths. On the resulting set of statements, model
checking can be applied in order to identify infeasible paths or input sets lead-
ing to a specific execution path. SymDroid, a symbolic execution framework for
Android has been proposed in [21]. A slightly different approach, leveraging
the S2E [12] framework for “partial” symbolic execution has been described in
[22]. Although heavyweight in terms of required system modifications, symbolic
execution is promising fully automated dynamic analysis as it helps identifying
input values for relevant test cases.

6 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

2 Related work

Another approach to dynamically inspect apps is to observe their behavior at
runtime, i.e., their inter-process communication and file access, but without
explicitly tracing data flows as proposed in TaintDroid. Here, various authors
have described different approaches (c.f [8, 25, 29, 30, 10]). However, apply-
ing behavior based inspection for a fully automated analysis is quite difficult. It
requires a comprehensive data set based on interaction with the GUI to learn
legitimate behavior and detect illegitimate apps.

While dynamic analysis is well suited to identify actual vulnerabilities and data
leaks as they occur, static analysis aims at identifying possible flaws by inspect-
ing the application without running it.

Considering static analysis, one early approach inspects the set of permissions
required by an Android app and checks whether it contains critical combina-
tions [16]. [14] investigates whether apps’ permissions exceed those typically
required for a specific type of application. More advanced approaches create
call graphs (interprocedural) and control flow graphs (intraprocedural) and try
to extract information about information flows and critical code patterns from
it. In general, three frameworks for static code analysis are worth mentioning:
Soot, Androguard, and Wala. Soot [23] is a framework for static analysis of Java
bytecode, featuring a conversion of bytecode into four different representations
at different abstraction levels. As one of the most comprehensive frameworks,
it allows to implement custom analysis through various extension points. While
Soot has been designed to operate on Java bytecode, extensions to support
instrumentation of dex bytecode have been published recently [6]. Soot is rel-
atively mature and its recent extensions for dex bytecode look promising, but
its feature-richness comes at a cost in terms of complexity and overhead. In
contrast to Soot, Androguard [13] focuses specifically on Android and operates
directly on dex bytecode, skipping any error-prone translations to higher-level
languages. It is thus leaner and can be extended by directly modifying its source
code (python). Wala [3] is another static analysis framework which has originally
been created for Java, similar to Soot. It provides the basis for AndroidLeaks
[18], a tool to identify data leaks in Android applications. In contrast to our
approach, the detection, i.e., the definition of data leaks, is not configurable.
Static analysis is also deployed in [19] and [11] to detect capability leak vulnera-
bilities which can lead to so-called confused deputy attacks.

As static and dynamic analysis is complementary, combining both approaches is
an obvious improvement. ProfileDroid [28] applies both approaches in order to
automatically create profiles of apps, however without searching for security-
relevant flaws, as we do. RiskRanker [20] is similar to our approach in that
it identifies potential security flaws in apps by combining different detection
mechanisms, but similar to the approach in [7] it does not consider user-specific
security requirements to check for.

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

7

3 Framework design

The design goal of App-Ray is to create an extensible framework for a fully au-
tomated and user-driven security inspection of Android apps. The framework’s
components serve the following purposes:

• Specifying and refining user requirements,

• orchestrating different analysis modules, and

• evaluating the results according to the previously defined requirements.

The two main challenges of the framework design are (1) the refinement of
high-level security goals to user-specific security requirements and (2) auto-
mated orchestration of static and dynamic analysis components.

When testing an application, users simply choose a so-called protection profile,
i.e., a set of security requirements to check the application against. The frame-
work then breaks these requirements down to specific analysis tasks. This is
done by the core component of the framework, the analyzer. The actual anal-
ysis functionality is implemented by detection modules which are dynamically
added to the framework if they are needed to assess a certain requirement.
Each detection module has to provide an interface for configuring and execut-
ing its analysis, but is otherwise free to implement whatever analysis is required.
Having derived the configuration values for all detectors involved in a test case,
the analyzer puts all detectors in a scheduling list and sets them up by calling
their configuration method. After that, the analyzer runs the analysis tasks by
invoking the execute method of the previously configured detectors.

Detectors are first scheduled in phases by their type, referring either to meta
data analysis, static analysis, or dynamic analysis. The results of each phase are
collected in a common data structure and passed on to the following detection
modules enabling subsequent detectors to use the results of previously run de-
tectors.

3.1 Meta data analysis

The meta data analysis collects information about the app, such as the con-
tained files and native libraries, as well as information from the AndroidManifest.xml
file. Here, security relevant information is gained from the set of required per-
missions, entry points to the application in form of activities, content providers,
and services. In addition to that, external services which have been integrated

8 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

3 Framework design

into App-Ray, such as virustotal [2] for checking the app for known exploit sig-
natures, are invoked and their return data is collected. Meta data analysis serves
as an efficient way to get first insights into an app and to collect information
paving the way for more detailed, subsequent inspection techniques.

3.2 Static analysis

In a next step, detectors for static analysis are invoked. Here, the actual dex
bytecode of the application is inspected to detect patterns indicating malicious
or vulnerable code. At this stage, detectors gather various information about
the app, such as contained classes and methods, call graphs and data flow
graphs, implemented interfaces, etc. Based on this information, App-Ray stat-
ically searches for potential information leaks, i.e., unwanted data flows send-
ing private information (location, contact data, etc.) to untrusted APIs (sockets,
browser intents, etc.). Other examples for potentially malicious code comprise
attempts to place tapjacking attacks by means of fullscreen enlarged toast mes-
sages, attempts to record touch events via transparent SYSTEM_ALERT win-
dows, as well as any attempt to invoke suspicious files, such as su (superuser),
busybox (utilities), /dev/input/event* (touch events), /dev/input/fb
(framebuffer), and others. In particular, one test has proven to be highly rele-
vant in practice: to check for implementations of the interface javax.net.ssl.TrustManager
[17]. On the one hand, this is required for certificate pinning, i.e., an improve-
ment of the certificate verification relying on Android’s built-in CAs. On the
other hand, however, the default TrustManager is often overwritten to simply
eliminate certificate checks, thus leaving the communication open to Man-in-
the-Middle attacks. App-Ray checks for such cases by inspecting the bytecode
of any implementation of the TrustManager interface to distinguish whether
it is a certificate pinning or a “void” TrustManager implementation. Practical
experience with our prototype strongly confirms the findings of [17], stating
a significant amount of Android application are prone to Man-in-the-Middle
attacks due to intentionally overwritten TrustManagers.
It is in the nature of static analysis that these findings may be inaccurate, and
produce false positive or false negatives. False positives can occur, e.g., if a GUI
with a transparent full screen SYSTEM_ALERT window is actually required for
certain interactions. False negatives may result from attack patterns which have
not been anticipated and thus are not checked for, or if applications circumvent
detection, e.g., by constructing malicious code dynamically at run time.

3.3 Dynamic analysis

To improve detection capabilities, App-Ray adds a dynamic analysis step in
which the application is executed within an emulated environment. Here, we
inspect the runtime behavior of the application and validate potential leaks

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

9

3 Framework design

previously identified by the static analysis. Also, checks for further information
are run, including: capturing network traffic and filtering for potential privacy
breaches, user tracking, monitoring file access, and tracking information flows
with dynamic taint analysis, as described in [27]. One challenge in dynamic anal-
ysis is to drive an application down relevant execution paths to cover all security-
critical executions paths. App-Ray allows to record and replay user inputs to
automatically simulate the execution of an app. Having applied this record and
replay technique within our prototype to a variety of apps makes us confident
that this approach is sufficient to discover the majority of flaws. However, we
acknowledge that symbolic execution depicts a solution to capture all possi-
ble execution paths from which input data for automated test cases could be
derived. Of course, symbolic execution comes with its own drawbacks and chal-
lenges not to be discussed within this paper. Nevertheless, App-Ray supports
the integration of such techniques and they will be part of our future work on
automated security tests for Android.

3.4 Combination of static and dynamic tests

So far, meta data analysis, static analysis and dynamic analysis have been ap-
plied separately, only interacting via a common data structure, which passes
results between detection modules. However, App-Ray also supports dependen-
cies between detectors, thereby enabling a combination of static and dynamic
analysis techniques which leads to increased detection rates and less false posi-
tives. As each detector has access to the analyzer’s scheduling queue, it is pos-
sible for one detector to invoke another one and to continue working on its
provided information. For instance, during the static analysis, a detector might
collect all class names and methods present in the code. This can easily be done
by inspecting the dex bytecode, however, as soon as classes are loaded via re-
flection, e.g., via Class.forName("classname"), static analysis comes
to its end, especially when classes are loaded from a remote location. In this
case, the static analysis detection module can schedule a dynamic analysis mod-
ule providing all remote data, wait for it to finish its execution and then retrieve
the loaded class from the dynamic detector’s result data.

This way, App-Ray allows for automatically interweaving of different types of
analysis techniques, which, to the best of our knowledge, is not supported by
other tools.

3.5 Evaluation of the analysis

One goal of App-Ray is to support automated tests for user-specified security
requirements. Hence, it is not possible to hardcode the evaluation of the previ-
ously collected raw data from the detectors, but rather a flexible, rule-based ap-
proach is necessary. Rules are defined as boolean expressions over predicates of

10 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

3 Framework design

the attributes which are collected during the analysis. Attributes may thus con-
tain information such as method names, strings, decompiled source code, data
flows, etc. Predicates are functions which take attributes as input and return a
boolean value. They can be registered in the framework to support various eval-
uations, as shown by the following exemplary rule, using a trivialImpl
predicate to check for flawed TLS implementations, and a implClasses
function which returns all used classes that use the given interface. So, a (simpli-
fied) rule may look as follows:

TLSFlaw = trivialImpl(implClasses(HostnameVerifier))

∨trivialImpl(implClasses(X509TrustManager))

∨in(AllowAllHostnameVerifier, usedClasses)

3.6 Integration into existing threat assessment processes

App-Ray configures detection modules according to user-specific security re-
quirements and thus returns user-specific reports. It is suitable to be embedded
in threat assessment processes executed by security officers or administrators
responsible for distributing apps to a user group, e.g. via an enterprise market.
In the following, we describe the process of deriving user-specific security re-
quirements and using them to configure detection modules. Note that eliciting
security requirement is a process that requires domain specific knowledge, usu-
ally at an expert level, which can be tool-supported but is hard to automate.
However, the process of security requirement elicitation itself is not in focus of
App-Ray.

In a typical first step of threat analysis, assets of the mobile platform are an-
alyzed. They are defined by the user and may relate to the result of a certain
usage context the device is intended to work in or to an user-specific app to be
deployed on the device. To exemplify our approach, it is assumed that a user
wants to install a banking app on her device to conduct financial transactions.
User-specific assets, such as sensitive data contained in the banking app, are re-
fined by an expert until a technical representation is achieved. In the context of
the banking app, part of such a technical representation of assets is the imple-
mentation of methods needed to encrypted the transaction data, authenticate
the remote banking server and ensure integrity of transaction data sent. After
having analyzed a device’s assets, threats are derived. At first, the motivation
of an attacker has to be modeled by identifying high-level goals an attacker is
persuading, such as financial gains. In our example, an attacker may want to
intercept financial transactions and change the receiver’s account to rewire the
transaction and thus steal the funds to be transferred. From the motivation of
an attacker, technical targets are derived. In the banking app’s case, one tech-
nical target may be to manipulate the communication for the financial trans-
action from the mobile device to the remote banking server. Then, ways how

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

11

3 Framework design

Requirements

Protection Profile
(rule set)

Analyser

Detectors

Report

User

Configuration Attribute 1...
Configuration Attribute N

Metadata Analysis

Static Analysis
Dynamic

Analysis

Figure 3.1: Configuration of detection modules according to user-specific requirements

to reach these targets, i.e., attack vectors are described. At this point, the re-
sults of the asset analysis pay off by providing domain specific knowledge. In
our banking app example, the attacker may try to exploit a flaw in the app’s
security model. One known vulnerability which could allow the attacker to
launch a man-in-the-middle attack may exist if the banking app overwrites the
javax.net.ssl.TrustManager, thereby removing proper certificate
and host name validation (c.f. [17]).

Based on the threat analysis, security requirements to test for can now be de-
rived from the attack vectors. By negating the attack vectors’ entry points, cor-
responding security requirements are derived. Consider again the example of
overwriting the TrustManager with a void implementation: the entry point of
the respective attack vector is e.g., any class extending javax.net.ssl.TrustManager,
removing proper certificate and host name validation. Hence, the correspond-
ing security requirement reads “An app shall not overwrite the default Trust-
Manager with non-implemented methods”. Negating this requirement leads to
a security requirement which can directly be translated to the above mentioned
evaluation rule for App-Ray (see Section 3.5).

The integration of App-Ray into the threat assessment process in depicted in
Figure 3.1.

12 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

4 Prototype implementation

The App-Ray prototype supports user-specific requirements and is able to check
apps from various sources. Apps are analyzed statically and dynamically using
different security scanning techniques, e.g., using TaintDroid [15], Androguard
[13], and information directly available from the application file as explained in
Section 3.

All dynamic tests are executed in a virtual environment where apps are started
and observed for several seconds. As already mentioned in Section 3.3, App-
Ray supports scripting of simulated user interactions with an app, for further
implementation details please refer to [27]. Generally, apps need different user
input ranging from simple clicks to more difficult tasks, such as solving a level in
a game. Since our tests presented hereafter focus on the feasibility of automat-
ing user-specific security scanning, we have omitted to deploy record and replay
techniques. To generate comparable output from the prototype for our tests,
all apps are started and operated in the same way. As shown in Section 4.2,
starting an app and observing the behavior for several seconds already provides
meaningful insights into an application, e.g., about the network traffic during
start up. However, we acknowledge that results of certain dynamic techniques,
e.g., behavior-based analysis, may benefit from the deployment of record and
replay techniques to generate and execute user input.

Our prototype combines different scanning techniques by orchestrating them
in the analyzer component according to the requirement specific protection
profile. Results returned by the detectors are converted into a common data for-
mat and passed on to the evaluation component where the results are matched
against the protection profile. However, to show feasibility of App-Ray, it is suf-
ficient to summarize the results of all scanning techniques and provide a brief
explanation for each finding.

4.1 Practical Application

Evaluating the feasibility of App-Ray to configure detection techniques accord-
ing to high-level security goals, we selected privacy as a goal to start from. On
this basis, we derived security requirements of a fictional user as described in
Section 3.6 and selected the following two user-specific protection profiles
(non-technical description) as part of the test set:

• Does the app use TLS, and if so, is it implemented correctly?

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

13

4 Prototype implementation

• Does the app include tracking or advertisement libraries whilst having
access to sensitive information of the user?

These profiles are exemplary and App-Ray is not limited to them but rather can
be configured to cover many others. Each protection profile is mapped to secu-
rity requirements whose results are categorized as either OK or NOK (Not OK):

TLS usage: If an app (or parts of an app) communicates over HTTP, this is cate-
gorized as NOK, if all monitored communication is over HTTPS as OK.

TLS implementation flaws: Apps (or included libraries) can implement their own
certificate verification, which can either be non-existent or accept all certificates
without any validation. Both cases result in NOK. If no custom certificate verifi-
cation is implemented or the certificate validation is not removed, it is catego-
rized as OK.

Profiling: Apps can contain libraries for profiling users or collecting crash reports
sending out private information to third-party services. If the app can also read
sensitive information, i.e., IMEI, IMSI, telephone number, or location, this can
indicate a privacy violation (NOK). If the app does not have access to sensitive
information or does not contain libraries for profiling, it is categorized as OK.

Advertisement: Similar to tracking, apps can use advertisement libraries and
have access to sensitive information. Since this can be a problem if the ad li-
brary uses sensitive information (e.g., as shown in [26]), this finding is catego-
rized as NOK. If the app does not have access to sensitive information or does
not contain advertisement libraries, it is categorized as OK.

These four security requirements result in four different evaluation rules. The
rule for the TLS implementation flaw can be found in Section 3.5. The evalua-
tion rule for Advertisement looks as follows:

Adv = (in (permissions, INET) ∧ in(libs, adLibx))

∨in (capturedTraffic, adHosty)

4.2 Results

50 popular, free apps available at Google Play have been tested, selected from
the top 10 of the categories business, communication, productivity, social, and
tools (January 2013). The scans were executed on a current PC (Core i5@3.3GHz,
8GB RAM, Ubuntu 12.04 64 bit) and took between 50 s and 980s (depending
on the complexity and size of the app), with a mean of 185 s (σ = 171) and a
total runtime of 155 min. The results are summarized in Table 4.1.

These results were reviewed manually, e.g., for TLS implementation flaws, the
application’s implementation of the certificate verification (if such a verification

14 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

4 Prototype implementation

Requirement NOK OK
TLS usage 31/50 19/50

TLS implementation flaws 26/50 24/50
Profiling 29/50 21/50

Advertisement 24/50 26/50

Table 4.1: Test results

exists) was manually inspected. The results show that our prototype is capable
of scanning selected apps according to previously elicited, user-specific security
requirements. On the basis of these results, the user is thus able to assess apps’
security without manual inspection. App-Ray therefore provides meaningful
information about an app’s security and can serve as an information basis for an
administrator who can, in turn, recommend apps or further investigate results
not compliant with her requirements.

The test’s results show that the scanned apps often contain severe security is-
sues, for instance, more than half of the scanned apps contain profiling libraries
and have access to sensitive information of the device. Once requested permis-
sions have been accepted on installation, profiling libraries found in these apps
can easily access sensitive information of a user, such as IMEI, IMSI, telephone
number or location.

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

15

5 Conclusion

In this paper, we presented an user-driven and fully automated Android app se-
curity assessment framework, called App-Ray. Our framework combines static
and dynamic scanning techniques and analyzes apps according to security re-
quirements of a user, thereby providing lightweight integration into existing
threat and risk assessment processes. A user can scan apps according to specific
protection profiles and receives detailed results tailored to these requirements.
As the user does not have to configure the scanning techniques, our framework
is well suited for users without profound knowledge in, e.g., reverse engineer-
ing or bytecode analysis.

A practical application of the developed prototype with 50 popular, free apps
from Google Play showed that more than half of the apps do not comply with a
selected set of user-specific requirements representing a user’s privacy.

In our future work, we plan to extend the analysis capabilities of App-Ray by
further techniques, based on bytecode instrumentation and symbolic execution.
Thereby, we envision to better address the challenge of automatically gener-
ating artificial, but meaningful simulated inputs to the application under test.
Studies on specific types of vulnerabilities and their distribution across the differ-
ent markets will follow.

16 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

Bibliography

[1] droidbox – Android Application Sandbox. http://code.google.
com/p/droidbox/, accessed 10th Apr. 2013. 6

[2] VirusTotal. http://www.virustotal.com/, accessed 10th Apr.
2013. 9

[3] WALA – T.J. Watson Libraries for Analysis. http://wala.sourceforge.net/,
accessed 10th Apr. 2013. 7

[4] android-apktool – A tool for reverse engineering Android apk files. http:
//code.google.com/p/android-apktool/, accessed 29th Jan.
2013. 6

[5] smali – An assembler disassembler for Androids dex format. http://
code.google.com/p/smali/, accessed 29th Jan. 2013. 6

[6] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In Proceed-
ings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis, SOAP ’12, pages 27–38, New York, NY, USA, 2012.
ACM. 7

[7] L. Batyuk, M. Herpich, S. Camtepe, K. Raddatz, A. Schmidt, and S. Al-
bayrak. Using static analysis for automatic assessment and mitigation of
unwanted and malicious activities within android applications. In Malicious
and Unwanted Software (MALWARE), pages 66 –72, oct. 2011. 7

[8] A. Bauer, J.-C. Kuster, and G. Vegliach. Runtime verification meets android
security. In NASA Formal Methods Symposium (NFM’12), pages 174–180,
Norfolk, Virginia/USA, April 2012. Springer-Verlag. 7

[9] T. Blaesing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Albayrak. An
Android Application Sandbox system for suspicious software detection. In
5th International Conference on Malicious and Unwanted Software (MAL-
WARE), pages 55–62, 2010. 6

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for Android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile device
(SPSM), pages 15–26. ACM, 2011. 7

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

17

http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://www.virustotal.com/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://code.google.com/p/smali/
http://code.google.com/p/smali/

Bibliography

[11] P. P. Chan, L. C. Hui, and S. M. Yiu. DroidChecker: analyzing android ap-
plications for capability leak. In Proceedings of the 5th ACM conference
on Security and Privacy in Wireless and Mobile Networks (WISEC), pages
125–136. ACM, 2012. 7

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform for in-vivo
multi-path analysis of software systems. SIGPLAN Not., 46(3):265–278,
Mar. 2011. 6

[13] A. Desnos and G. Gueguen. New "open source" step in android applica-
tion analysis. In 10th annual PacSec conference, Nov. 2012. 7, 13

[14] F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova. Detection of
malicious applications on android os. In Proceedings of the 4th interna-
tional conference on Computational forensics, IWCF’10, pages 138–149,
Berlin, Heidelberg, 2011. Springer-Verlag. 7

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In 9th USENIX conference on Operating
systems design and implementation, 2010. 6, 13

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In 16th ACM conference on Computer and com-
munications security (CCS), pages 235–245. ACM, 2009. 7

[17] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why eve and mallory love android: an analysis of android ssl
(in)security. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 50–61, New York, NY, USA,
2012. ACM. 9, 12

[18] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: Automatically
detecting potential privacy leaks in android applications on a large scale. In
5th international conference on Trust and Trustworthy Computing (TRUST),
2012. 7

[19] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of ca-
pability leaks in stock Android smartphones. In Proceedings of the 19th
Network and Distributed System Security Symposium (NDSS), Feb. 2012. 7

[20] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In 10th international
conference on Mobile systems, applications, and services (MobiSYS), 2012.
7

[21] J. Jeon, K. K. Micinski, and J. S. Foster. Symdroid: Symbolic execution for
dalvik bytecode. Technical report, University of Maryland, 2012. 6

[22] A. Kirchner. Data leak detection in smartphone applications. Master thesis,
Technical University Vienna, Chair for Computer Science, Nov. 2011. 6

18 Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security
assessment

Bibliography

[23] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The soot framework for
java program analysis: a retrospective. In CETUS Users and Compiler Infras-
tructure Workshop, Oct. 2011. 7

[24] A. Saracino, F. Martinelli, D. Sgandurra, and G. Dini. Madam: a multi-level
anomaly detector for android malware. In Int’l Conf. Mathematical Meth-
ods, Models, and Architectures for Computer Network Security (MMM-
ACNS), 2012. 6

[25] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andromaly: a
behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, 38(1):161–190, 2011. 7

[26] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating
user privacy in android ad libraries. IEEE Mobile Security Technologies
(MoST), 2012. 14

[27] D. Titze, P. Stephanow, and J. Schütte. A configurable and extensible secu-
rity service architecture for smartphones. Int’l Symposium on Frontiers of
Information Systems and Network Applications (FINA), 2013. 10, 13

[28] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: Multi-layer
profiling of android applications. In 18th Annual International Conference
on Mobile Computing and Networking (MobiCom), 2012. 7

[29] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pbmds: a behavior-based mal-
ware detection system for cellphone devices. In Proceedings of the third
ACM conference on Wireless network security, WiSec ’10, pages 37–48,
New York, NY, USA, 2010. ACM. 7

[30] M. Zhao, T. Zhang, F. Ge, and Z. Yuan. Robotdroid: A lightweight mal-
ware detection framework on smartphones. Journal of Networks (NoW),
7(4):715–722, 2012. 7

Fraunhofer AISEC
App-Ray: User-driven and fully automated Android app security

assessment

19

	1 Introduction
	2 Related work
	3 Framework design
	3.1 Meta data analysis
	3.2 Static analysis
	3.3 Dynamic analysis
	3.4 Combination of static and dynamic tests
	3.5 Evaluation of the analysis
	3.6 Integration into existing threat assessment processes

	4 Prototype implementation
	4.1 Practical Application
	4.2 Results

	5 Conclusion

