
Julian Schütte1, Dennis TItze1, José Maria de Fuentes2

1 Fraunhofer AISEC, Munich, Germany

2 University Carlos III of Madrid, Spain

TrustCom 2014, Beijing

AppCaulk

Data Leak Prevention by Injecting Targeted Taint

Tracking Into Android Apps

Motivation

 There is no data usage control in Android

 Among 10.000 most popular apps, 5 % send out IMEI

immediately when started

 Controlling data flows at application level is required

91,4%
INTERNET

83,1%
ACCESS_NETWORK_STATE

63,1%
WRITE_EXTERNAL_STORAGE

TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);

String imei = tm.getDeviceId();

Uri uri = Uri.parse("http://www.example.com?imei="+imei);

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

startActivity(intent);

Source

Sink

Static & dynamic data leak detection

 Tracking the taint state of registers

 Registers written by a source function become tainted with a flag

 Tainted registers written to a sink function impose a leak

 e.g., FlowDroid1

 Overapproximative

 Tends to generate false positives

Static analysis

 e.g., TaintDroid2

 Detects leaks only as they occur

 Requires modified system image

Dynamic analysis

1 http://sseblog.ec-spride.de/tools/flowdroid/
2 http://appanalysis.org/

AppCaulk : Overview (1/2)

 Android platform does not provide data flow control

 Static data flow analysis overapproximates

 Simple dynamic taint analysis requires to monitor all registers +

modified VM

AppCaulk

 Static data flow analysis to identify call paths of potential leaks

 Injection of a dynamic taint analysis into the app along call paths

 Policy-controlled definition of sources/sinks/countermeasures/…

AppCaulk : Overview (2/2)

Data flow

analysis
Instrumentation

APK modifiedAPK

Taint analysis &

Leak detection

Policy

R
u

n
ti

m
e

D
e
si

g
n

 T
im

e

Efficient Data Flow Analysis (1/2)

 Transformation into smali IR

 Starting at sinks (method name + argument position), mark

argument register as potentially relevant

 Create slicing, applying propagation logic to registers

 When method parameter is reached, continue with callers

 Stop when no further relevant statements in worklist and taint states

did not change since last iteration

Lorg/apache/http/client/HttpClient;->

 execute(Lorg/apache/http/client/methods/HttpUriRequest;)Lorg/apache/http/HttpResponse;

location 3: Potentially marked: [v1]

if-ne v1, v2, ∶ location 2

location 2: Potentially marked: []

const/16 v1, 0x1

location 1: Potentially marked: [v1]

add-int v1, v1, 0x1

sink: Potentially marked: [v1]

invoke-static v1, [...]

Efficient Data Flow Analysis (2/2)

 Backwards slicing creates dfg to all sinks

 Forward slicing (analog to bwd) creates dfg from all sources

 Special cases

 Writing to static field taints all registers it is assigned to

 Array indices

Propagation across native methods

 Scope of static analysis: APK bytecode + Android framework.jar

 Native methods would break taint propagation

 Android 4.3 has ~3600 native methods

 1339 native methods may propagate data

(arguments + return values)

 Many of them are overloaded (e.g., Math.sqrt(D):D vs Math.sqrt(F):F)

 Manual definition of native methods propagation rules is feasible.

Propagation across external channels

 Writing tainted data into a file, reading from file

 propagate taint flag

 Handled by predefined combinations of channel entry/exit methods

Database.insert(X);

…

String result = Database.query(..);

Intent Y = intent.putExtra(String,X);

startActivity(Y);

…

Intent Y = getIntent();

SQLite DB Intents

Files Shared Preferences

FileWriter.write(X);

…

FileReader.read(X);

SharedPreferences.editor.put(Y,X);

SharedPrefrences.editor.commit();

…

SharedPreferences.getString(Y,X)

Instrumentation of Dalvik bytecode

 Add Tracker class

 Global taint table

 Handlers for taint propagation

 Handlers for leak detection

 Represent registers globally unique: Thread id|class|method|register

 For each statement along the call path, insert calls to propagation

handler method

baksmali Injector

APK
modifiedAPK

Tracker.smali

smali zip jarsign

AXMLParser AXMLPrinter Rewrite Manifest

unzip

 Runtime (s)

 Effectiveness compared against TaintDroid (purely dynamic tainting)

 Search for leak of getDeviceID(): 15 apps relevant and runnable

 Statically detected leaks not confirmed by TaintDroid: 3/15

 No misses, no false positives during dynamic test

 Effectiveness keeps up with purely dynamic taint analysis

Effectiveness evaluation

24 52201

263 7656

Conclusion

 AppCaulk "hardens" Android apps by combining static data flow

analysis with injection of a dynamic taint analysis into the app

 Detection rate keeps up with TaintDroid

 Applicable to any Android application

 No modification of Android platform required

