
Julian Schütte1, Dennis TItze1, José Maria de Fuentes2

1 Fraunhofer AISEC, Munich, Germany

2 University Carlos III of Madrid, Spain

TrustCom 2014, Beijing

AppCaulk

Data Leak Prevention by Injecting Targeted Taint

Tracking Into Android Apps

Motivation

 There is no data usage control in Android

 Among 10.000 most popular apps, 5 % send out IMEI

immediately when started

 Controlling data flows at application level is required

91,4%
INTERNET

83,1%
ACCESS_NETWORK_STATE

63,1%
WRITE_EXTERNAL_STORAGE

TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);

String imei = tm.getDeviceId();

Uri uri = Uri.parse("http://www.example.com?imei="+imei);

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

startActivity(intent);

Source

Sink

Static & dynamic data leak detection

 Tracking the taint state of registers

 Registers written by a source function become tainted with a flag

 Tainted registers written to a sink function impose a leak

 e.g., FlowDroid1

 Overapproximative

 Tends to generate false positives

Static analysis

 e.g., TaintDroid2

 Detects leaks only as they occur

 Requires modified system image

Dynamic analysis

1 http://sseblog.ec-spride.de/tools/flowdroid/
2 http://appanalysis.org/

AppCaulk : Overview (1/2)

 Android platform does not provide data flow control

 Static data flow analysis overapproximates

 Simple dynamic taint analysis requires to monitor all registers +

modified VM

AppCaulk

 Static data flow analysis to identify call paths of potential leaks

 Injection of a dynamic taint analysis into the app along call paths

 Policy-controlled definition of sources/sinks/countermeasures/…

AppCaulk : Overview (2/2)

Data flow

analysis
Instrumentation

APK modifiedAPK

Taint analysis &

Leak detection

Policy

R
u

n
ti

m
e

D
e
si

g
n

 T
im

e

Efficient Data Flow Analysis (1/2)

 Transformation into smali IR

 Starting at sinks (method name + argument position), mark

argument register as potentially relevant

 Create slicing, applying propagation logic to registers

 When method parameter is reached, continue with callers

 Stop when no further relevant statements in worklist and taint states

did not change since last iteration

Lorg/apache/http/client/HttpClient;->

 execute(Lorg/apache/http/client/methods/HttpUriRequest;)Lorg/apache/http/HttpResponse;

location 3: Potentially marked: [v1]

if-ne v1, v2, ∶ location 2

location 2: Potentially marked: []

const/16 v1, 0x1

location 1: Potentially marked: [v1]

add-int v1, v1, 0x1

sink: Potentially marked: [v1]

invoke-static v1, [...]

Efficient Data Flow Analysis (2/2)

 Backwards slicing creates dfg to all sinks

 Forward slicing (analog to bwd) creates dfg from all sources

 Special cases

 Writing to static field taints all registers it is assigned to

 Array indices

Propagation across native methods

 Scope of static analysis: APK bytecode + Android framework.jar

 Native methods would break taint propagation

 Android 4.3 has ~3600 native methods

 1339 native methods may propagate data

(arguments + return values)

 Many of them are overloaded (e.g., Math.sqrt(D):D vs Math.sqrt(F):F)

 Manual definition of native methods propagation rules is feasible.

Propagation across external channels

 Writing tainted data into a file, reading from file

 propagate taint flag

 Handled by predefined combinations of channel entry/exit methods

Database.insert(X);

…

String result = Database.query(..);

Intent Y = intent.putExtra(String,X);

startActivity(Y);

…

Intent Y = getIntent();

SQLite DB Intents

Files Shared Preferences

FileWriter.write(X);

…

FileReader.read(X);

SharedPreferences.editor.put(Y,X);

SharedPrefrences.editor.commit();

…

SharedPreferences.getString(Y,X)

Instrumentation of Dalvik bytecode

 Add Tracker class

 Global taint table

 Handlers for taint propagation

 Handlers for leak detection

 Represent registers globally unique: Thread id|class|method|register

 For each statement along the call path, insert calls to propagation

handler method

baksmali Injector

APK
modifiedAPK

Tracker.smali

smali zip jarsign

AXMLParser AXMLPrinter Rewrite Manifest

unzip

 Runtime (s)

 Effectiveness compared against TaintDroid (purely dynamic tainting)

 Search for leak of getDeviceID(): 15 apps relevant and runnable

 Statically detected leaks not confirmed by TaintDroid: 3/15

 No misses, no false positives during dynamic test

 Effectiveness keeps up with purely dynamic taint analysis

Effectiveness evaluation

24 52201

263 7656

Conclusion

 AppCaulk "hardens" Android apps by combining static data flow

analysis with injection of a dynamic taint analysis into the app

 Detection rate keeps up with TaintDroid

 Applicable to any Android application

 No modification of Android platform required

