Data Leak Prevention by Injecting Targeted Taint
Tracking Into Android Apps

Julian Schitte!, Dennis Tltze', José Maria de Fuentes?

"Fraunhofer AISEC, Munich, Germany
2 University Carlos Ill of Madrid, Spain
TrustCom 2014, Beijing

Motivation

= There is no data usage control in Android

A < ’

91,4% 83,1% 63,1%
INIRS NS ACCESS_NETWORK_STATE WRITE_EXTERNAL_STORAGE

= Among 10.000 most popular apps, 5 % send out IMEI
immediately when started

- Controlling data flows at application level is required

Static & dynamic data leak detection

= Tracking the taint state of registers

= Registers written by a source function become tainted with a flag

= Tainted reqisters written to a sink function impose a leak

Source | String 1) = im.getDeviceld();

Uri iUri.parse(“http://www.example.com?mil="+);

Intent = new Intent(Intent ACTION_VIEW, ur);
R

Sink | startActivity();

TelephonyManager i1 = (TelephonyManager) getSystemService(Context. TELEPHONY_SERVICE);

Static analysis Dynamic analysis
= e.g., FlowDroid' = e.g., TaintDroid?
= Qverapproximative = Detects leaks only as they occur

= Tends to generate false positives = Requires modified system image

! http://sseblog.ec-spride.de/tools/flowdroid/
2 http://appanalysis.org/

AppCaulk: Overview (1/2)

= Android platform does not provide data flow control

Static data flow analysis overapproximates

Simple dynamic taint analysis requires to monitor all registers +
modified VM

AppCaulk

= Static data flow analysis to identify call paths of potential leaks

" |njection of a dynamic taint analysis into the app along call paths

Policy-controlled definition of sources/sinks/countermeasures/...

AppCaulk: Overview (2/2)

Polic
5 y
=
: I - — R
(=
)
5 APK modified APK

o P ML (S SEAT o B BT NS TR AP TR T Tt s . ¢ s it T e i.__.

-

Runtime

Efficient Data Flow Analysis (1/2)

" Transformation into smali IR

= Starting at sinks (method name + argument position), mark
argument reqister as potentially relevant

= (reate slicing, applying propagation logic to registers

location 3: Potentially marked: [1]
f if-ne v, v2, : location 2

location 1: Potentially marked: [v] location 2: Potentially marked: []
add-int v, v, 0x1 const/16 v1, 0x1

\ sink: Potentially marked: [v] /

invoke-static v, [...]
= When method parameter is reached, continue with callers

= Stop when no further relevant statements in worklist and taint states
did not change since last iteration

Efficient Data Flow Analysis (2/2)

= Backwards slicing creates dfg to all sinks

SIS
o9 el
00

= Forward slicing (analog to bwd) creates dfg from all sources

= Special cases
= Writing to static field taints all registers it is assigned to

= Array indices

Propagation across native methods

= Scope of static analysis: APK bytecode + Android framework.jar

- Native methods would break taint propagation

" Android 4.3 has ~3600 native methods

= 1339 native methods may propagate data
(arguments + return values)

" Many of them are overloaded (e.g., Math.sqrt(D):D vs Math.sqrt(F):F)

- Manual definition of native methods propagation rules is feasible.

Propagation across external channels

= Writing tainted data into a file, reading from file
- propagate taint flag

= Handled by predefined combinations of channel entry/exit methods

SQLite DB Intents
Database.insert(*); Intent ' = intent.putExtra(String, ©);
startActivity(/);
String = Database.query(..);

Intent ' = getintent();
Files Shared Preferences
FileWriter.write(1); SharedPreferences.editor.put(Y, ©);

SharedPrefrences.editor.commit();
FileReader.read();

SharedPreferences.getString(Y, <)

Instrumentation of Dalvik bytecode

modifiedAPK

o -

= Add Tracker class
The app is about to send your IMEI

= Global taint table

= Handlers for taint propagat% Do you want allow this action?
No Yes

= Handlers for leak detection

Tracker.smali

A Leak Detected!

= Represent registers globally unique: Thread id|class|method|register

= For each statement along the call path, insert calls to propagation
handler method

Effectiveness evaluation

= Runtime (s) 24" I 52201
263 7656
= Effectiveness compared against TaintDroid (purely dynamic tainting)
= Search for leak of getDevicelD(): 15 apps relevant and runnable
= Statically detected leaks not confirmed by TaintDroid: 3/15

= No misses, no false positives during dynamic test

- Effectiveness keeps up with purely dynamic taint analysis

Conclusion

= AppCaulk "hardens" Android apps by combining static data flow
analysis with injection of a dynamic taint analysis into the app

= Detection rate keeps up with TaintDroid
= Applicable to any Android application

= No modification of Android platform required

